• 제목/요약/키워드: Co-sputter

검색결과 123건 처리시간 0.024초

Nd:YAG Laser를 이용한 자성금속 막의 패턴 식각 (Micro-patterning of Multi-layered Magnetic Metal Films Using Nd:YAG Laser)

  • 채상훈;서영준;송재성;민복기;안승준;이주현
    • 한국재료학회지
    • /
    • 제10권2호
    • /
    • pp.171-174
    • /
    • 2000
  • 본 연구에서는 실리콘 wafer위에 sputtering방법으로 진공증착된 CoNbZr 비정질 박막을 Nd:YAG 레이저로 식각하기 위한 실험을 했는데, 금속의 경우 표면에서 빛의 반사율이 매우 크기 때문에 파장이 $1.06{\mu\textrm{m}}$인 Nd:YAG 레이저의 에너지를 흡수하는 것이 매우 어려우므로 식각이 거의 이루어지지 않았다. 그래서 이러한 문제를 해결하기 위한 새로운 시도로서 본 연구에서는 빛의 흡수율이 좋은 검은색의 polymer막을 금속박막의 표면에 도포하고 이 polymer막 위에 레이저를 조사해서 금속박막의 식각하는 실험을 실시하였다. 기존의 방법으로는 laser power가 332W나 되는데도 식각이 거의 일어나지 않았지만 본 연구의 방법을 이용했을 때는 laser power가 114W로 1/3정도 밖에 안 되는데도 레이저 식각이 비교적 양호하게 이루어졌다. 이는 검은색의 polymer층이 Nd:YAG 레이저 에너지의 흡수 및 전달 층의 역할을 하기 때문인 것으로 생각된다.

  • PDF

Cu2In3, CuGa, Cu2Se를 이용한 전구체박막을 셀렌화하여 제조한 Cu(In,Ga)Se2 박막의 미세구조 및 농도분포 변화 (Microstructure and Compositional Distribution of Selenized Cu(In,Ga)Se2 Thin Film Utilizing Cu2In3, CuGa and Cu2Se)

  • 이종철;정광선;안병태
    • 한국재료학회지
    • /
    • 제21권10호
    • /
    • pp.550-555
    • /
    • 2011
  • A high-quality CIGS film with a selenization process needs to be developed for low-cost and large-scale production. In this study, we used $Cu_2In_3$, CuGa and $Cu_2Se$ sputter targets for the deposition of a precursor. The precursor deposited by sputtering was selenized in Se vapor. The precursor layer deposited by the co-sputtering of $Cu_2In_3$, CuGa and $Cu_2Se$ showed a uniform distribution of Cu, In, Ga, and Se throughout the layer with Cu, In, CuIn, CuGa and $Cu_2Se$ phases. After selenization at $550^{\circ}C$ for 30 min, the CIGS film showed a double-layer microstructure with a large-grained top layer and a small-grained bottom layer. In the AES depth profile, In was found to have accumulated near the surface while Cu had accumulated in the middle of the CIGS film. By adding a Cu-In-Ga interlayer between the co-sputtered precursor layer and the Mo film and adding a thin $Cu_2Se$ layer onto the co-sputtered precursor layer, large CIGS grains throughout the film were produced. However, the Cu accumulated in the middle of CIGS film in this case as well. By supplying In, Ga and Se to the CIGS film, a uniform distribution of Cu, In, Ga and Se was achieved in the middle of the CIGS film.

초경합금에 나노결정질 다이아몬드 코팅 시 금속 중간층의 효과 (Effect of Metal Interlayers on Nanocrystalline Diamond Coating over WC-Co Substrate)

  • 나봉권;강찬형
    • 한국표면공학회지
    • /
    • 제46권2호
    • /
    • pp.68-74
    • /
    • 2013
  • For the coating of diamond films on WC-Co tools, a buffer interlayer is needed because Co catalyzes diamond into graphite. W and Ti were chosen as candidate interlayer materials to prevent the diffusion of Co during diamond deposition. W or Ti interlayer of $1{\mu}m$ thickness was deposited on WC-Co substrate under Ar in a DC magnetron sputter. After seeding treatment of the interlayer-deposited specimens in an ultrasonic bath containing nanometer diamond powders, $2{\mu}m$ thick nanocrystalline diamond (NCD) films were deposited at $600^{\circ}C$ over the metal layers in a 2.45 GHz microwave plasma CVD system. The cross-sectional morphology of films was observed by FESEM. X-ray diffraction and visual Raman spectroscopy were used to confirm the NCD crystal structure. Micro hardness was measured by nano-indenter. The coefficient of friction (COF) was measured by tribology test using ball on disk method. After tribology test, wear tracks were examined by optical microscope and alpha step profiler. Rockwell C indentation test was performed to characterize the adhesion between films and substrate. Ti and W were found good interlayer materials to act as Co diffusion barriers and diamond nucleation layers. The COFs on NCD films with W or Ti interlayer were measured as less than 0.1 whereas that on bare WC-Co was 0.6~1.0. However, W interlayer exhibited better results than Ti in terms of the adhesion to WC-Co substrate and to NCD film. This result is believed to be due to smaller difference in the coefficients of thermal expansion of the related films in the case of W interlayer than Ti one. By varying the thickness of W interlayer as 1, 2, and $4{\mu}m$ with a fixed $2{\mu}m$ thick NCD film, no difference in COF and wear behavior but a significant change in adhesion was observed. It was shown that the thicker the interlayer, the stronger the adhesion. It is suggested that thicker W interlayer is more effective in relieving the residual stress of NCD film during cooling after deposition and results in stronger adhesion.

Ti 첨가 Al2O3 코팅층의 두께와 열처리 조건이 LiCoO2 양극 박막의 미세구조와 전기화학적 특성에 미치는 영향 (Effect of Ti-Doped Al2O3 Coating Thickness and Annealed Condition on Microstructure and Electrochemical Properties of LiCoO2 Thin-Film Cathode)

  • 최지애;이성래;조원일;조병원
    • 한국재료학회지
    • /
    • 제17권8호
    • /
    • pp.447-451
    • /
    • 2007
  • We investigated the dependence of the various annealing conditions and thickness ($6\sim45nm$) of the Ti-doped $Al_2O_3$ coating on the electrochemical properties and the capacity fading of Ti-doped $Al_2O_3$ coated $LiCoO_2$ films. The Ti-doped-$Al_2O_3$-coating layer and the cathode films were deposited on $Al_2O_3$ plate substrates by RF-magnetron sputter. Microstructural and electrochemical properties of Ti-doped-$Al_2O_3$-coated $LiCoO_2$ films were investigated by transmission electron microscopy (TEM) and a dc four-point probe method, respectively. The cycling performance of Ti-doped $Al_2O_3$ coated $LiCoO_2$ film was improved at higher cut-off voltage. But it has different electrochemical properties with various annealing conditions. They were related on the microstructure, surface morphology and the interface condition. Suppression of Li-ion migration is dominant at the coating thickness >24.nm during charge/discharge processes. It is due to the electrochemically passive nature of the Ti-doped $Al_2O_3$ films. The sample be made up of Ti-doped $Al_2O_3$ coated on annealed $LiCoO_2$ film with additional annealing at $400^{\circ}C$ had good adhesion between coating layer and cathode films. This sample showed the best capacity retention of $\sim92%$ with a charge cut off of 4.5 V after 50 cycles. The Ti-doped $Al_2O_3$ film was an amorphous phase and it has a higher electrical conductivity than that of the $Al_2O_3$ film. Therefore, the Ti-doped $Al_2O_3$ coated improved the cycle performance and the capacity retention at high voltage (4.5 V) of $LiCoO_2$ films.

수소 분리용 팔라듐계 분리막의 세라믹 코팅 영향 (Ceramic barrier coated Pd hydrogen membrane on a porous nickel support)

  • 이춘부;이성욱;박진우;김광호;황경란;박종수;김성현
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.114.1-114.1
    • /
    • 2010
  • A highly performed Pd-based hydrogen membrane has prepared successfully on a modified porous nickel support. The porous nickel support modified by impregnation method of $Al(NO_3)_3{\cdot}9H_2O$ (Aldrich Co.) over the nickel powder showed a strong resistance to hydrogen embrittlement and thermal stability. Plasma surface modification treatment was introduced as a pre-treatment process instead of conventional HCl wet activation. Ceramic barrier was coated on the external surface of the prepared nickel supports to prevent intermetallic diffusion and to enhance the affinity between the support and membrane. Palladium and copper were deposited at thicknesses of $4\mu}m$ and $0.5{\mu}m$, respectively, on a barrier-coated support by DC sputtering process. The permeation measurement was performed in pure hydrogen at $400^{\circ}C$. The single gas permeation of our membrane was two times higher than that of the previous membrane which do not have ceramic barrier.

  • PDF

Advanced Permeation Properties of Solvent-free Multi-Layer Encapsulation of thin films on Ethylene Terephthalate(PET)

  • Han, Jin-Woo;Kang, Hee-Jin;Kim, Jong-Yeon;Kim, Jong-Hwan;Han, Jung-Min;Moon, Hyun-Chan;Park, Kwang-Bum;Kim, Hwi-Woon;Seo, Dae-Shik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.973-976
    • /
    • 2006
  • In this paper, the inorganic multi-layer encapsulation of thin film was newly adopted to protect the organic layer from moisture and oxygen. Using the electron beam, Sputter, inorganic multi-layer thin-film encapsulation was deposited onto the Ethylene Terephthalate(PET) and their interface properties between inorganic and organic layer were investigated. In this investigation, the SiON $SiO_2$ and parylene layer showed the most suitable properties. Under these conditions, the water vapor transmission rate (WVTR) for PET can be reduced from level of $0.57g/m^2/day$ (bare substrate) to $1^{\ast}10^{-5}g/m^2/day$ after application of a SiON and $SiO_2$ layer. These results indicate that the $PET/SiO_2/SiON/Parylene$ barrier coatings have high potential for flexible organic light-emitting diode(OLED) applications.

  • PDF

고분자 기판위의 다층 보호막의 성능 평가 (Improvement of Permeation of applied Multi-Layer Encapsulation of thin films on Ethylene Terephthalate(PET))

  • 김종환;한진우;강희진;김종연;문현찬;최성호;박광범;김태하;김휘운;서대식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 학술대회 및 기술세미나 논문집 디스플레이 광소자
    • /
    • pp.60-61
    • /
    • 2006
  • In this paper, the inorganic-organic thin film encapsulation layer was newly adopted to protect the organic layer from moisture and oxygen. Using the electron beam, Sputter and Spin-Coater system, the various kinds of inorganic and organic thin-films were deposited onto the Ethylene Terephthalate(PET) and their interface properties between organic and inorganic layer were investigated. Results indicates that the SiON/PI/SiON/PI/PET barrier coatings have high potential for flexible organic light-emitting diode(OLEO) applications.

  • PDF

$ZrO_2$ 절연막을 이용한 Ta-Mo 합금 MOS 게이트 전극의 특성 (MOS characteristics of Ta-Mo gate electrode with $ZrO_2$)

  • 안재홍;김보라;이정민;홍신남
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.157-159
    • /
    • 2005
  • MOS capacitors were fabricated to study electrical and chemical properties of Ta-Mo metal alloy with $ZrO_2$. The work function of Ta-Mo alloy were varied from 4.1eV to 5.1eV by controlling the composition. When the atomic composition of Mo is 10%, good thermal stability up to $800^{\circ}C$ was observed and work function of MOS capacitor was 4.1eV, compatible for NMOS application. But pure Ta exhibited very poor thermal stability. After $600^{\circ}C$ annealing, equivalent oxide thickness of tantalum gate MOS capacitor was continuously decreased. Barrier heights of Ta-Mo alloy and pure metal that supported the work function values were calculated from Fowler-Nordheim analysis. As a result of these electrical?experiments, Ta-Mo metal alloy with $ZrO_2$ is excellent gate electrode for NMOS.

  • PDF

Resistive Switching Effects of Zinc Silicate for Nonvolatile Memory Applications

  • Im, Minho;Kim, Jisoo;Park, Kyoungwan;Sok, Junghyun
    • 한국전기전자재료학회논문지
    • /
    • 제35권4호
    • /
    • pp.348-352
    • /
    • 2022
  • Resistive switching behaviors of a co-sputtered zinc silicate thin film (ZnO and SiO2 targets) have been investigated. We fabricated an Ag/ZnSiOx/highly doped n-type Si substrate device by using an RF magnetron sputter system. X-ray diffraction pattern (XRD) indicated that the Zn2SiO4 was formed by a post annealing process. A unique morphology was observed by scanning electron microscope (SEM) and atomic force microscope (AFM). As a result of annealing process, 50 nm sized nano clusters were formed spontaneously in 200~300 nm sized grains. The device showed a unipolar resistive switching process. The average value of the ratio of the resistance change between the high resistance state (HRS) and the low resistance state (LRS) was about 106 when the readout voltage (0.5 V) was achieved. Resistance ratio is not degraded during 50 switching cycles. The conduction mechanisms were explained by using Ohmic conduction for the LRS and Schottky emission for the HRS.

Stainless steel 기판에서 제조된 CIGS 박막 태양전지의 ZnO 확산 방지막을 이용한 deep level defect 감소 연구

  • 김재웅;김혜진;김기림;김진혁;정채환
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.393-393
    • /
    • 2016
  • Cu(In,Ga)Se2 (CIGS) 박막 태양전지는 높은 효율과 낮은 제조비용, 높은 신뢰성으로 인해 박막 태양전지 중 가장 각광받고 있다. 특히 유리기판 대신 가볍고 유연한 철강소재나 플라스틱 소재를 이용하여 발전분야 외에 건물일체형, 수송용, 휴대용등 다양한 분야에 적용이 가능하다. 이러한 유연 기판을 이용한 CIGS 태양전지의 개발을 위해서는 기판의 특성에 따른 다양한 공정개발이 선행되어야 한다. Stainless steel과 같은 철강기판의 경우 Fe, Ni, Cr등의 불순물이 확산되어 흡수층의 특성을 저하시켜 효율을 감소시킨다. 따라서 이러한 철강 기판의 경우 불순물의 확산을 방지하는 확산방지막이 필수적이다. 이러한 유연기판의 특성을 고려하여 본 연구에서는 기존의 두껍고 추가 장비가 요구되는 SiOx나 Al2O3 대신 200nm 이하의 ZnO 박막을 이용하여 확산방지막을 제조하였다. 유연기판으로 STS 430 stainless steel을 이용하였다. 먼저 stainless steel 기판을 이용하여 기판에 의한 흡수층의 특성을 분석하였으며 ZnO 확산 방지막의 유무 및 두께에 따른 흡수층 및 소자의 특성을 분석하였다. 이때 확산 방지막은 기존 TCO 공정에서 사용되는 i-ZnO를 사용하였으며 RF sputter를 이용하여 50~200nm로 두께를 달리하며 특성 비교를 실시하였다. 효율은 확산방지막을 적용하지 않았을 때 약 5.9%에서 확산 방지막 적용시 약 10.7%로 증가하였다. 그 후 기판으로부터 확산되는 불순물의 유입에 의한 결함을 분석하기 위해 DLTS를 이용하여 소자 특성을 분석하였다. 온도는 80~300K으로 가변하며 측정을 실시하였으며 그 후 계산을 통해 activation energy와 capture cross section 값을 구하였다. DLTS 분석 결과 Ni이 CIGS 흡수층으로 확산되어 NiCu anti-site를 형성하여 태양전지의 효율을 감소시키는 것을 확인하였다. 모든 흡수층은 Co-Evaporation 방법을 이용하여 제조하였으며 제조된 흡수층은 SEM, XRF, XRD, GD-OES, PL, Raman등을 이용하여 분석하였으며 그 외 일반적인 방법을 이용하여 Mo, CdS, TCO, Al grid를 제조하였다. AR 코팅은 제외 하였으며 제조된 소자는 솔라 시뮬레이터를 이용하여 효율 특성 분석을 실시하였으며 Q.E. 분석을 실시하였다.

  • PDF