• Title/Summary/Keyword: Co-regulator

Search Result 191, Processing Time 0.027 seconds

Inhibition of Proliferation of Human Fibroblast by δ-Aminolevulinic Acid (ALA) Derivatives through the Induction of Mitochondria Membrane Depolarization (δ-Aminolevulinic acid (ALA) 유도체들의 미토콘드리아 탈분극 유도에 의한 인간 섬유아세포의 세포분열 억제)

  • Jun, Yong-woo;Han, Du-Gyeong;Lee, Jin-A;Jo, Su-Yeon;Jang, Deok-Jin
    • KSBB Journal
    • /
    • v.30 no.6
    • /
    • pp.313-318
    • /
    • 2015
  • ${\delta}$-Aminolevulinic acid (ALA) is an endogenous metabolite formed in the mitochondria from succinyl-CoA and glycine, and plays a key role in the living body as an intermediate of the compound in the porphyrin biosynthesis pathway. ALA has been commonly used in photodynamic therapy for several years, because ALA is of interest as a biodegradable mediator, a growth regulator, and an effective agent used in dermatology. Here, we determined which ALA derivatives were the most effective for the inhibition of the cell proliferation and growth of human fibroblast. As a result, we found that the treatment of ALA derivatives including ALA, ALAP (ALA phosphate salt), MAL (Methyl 5-aminolevulinate hydrochloride salt), PBGL (phophobilinogen lactam) and PBGH (phophobilinogen-HCl) could attenuate cell proliferation of human fibroblast cells. Among them, PBGH was the most effective derivative. In addition, PBGH treatment could induce mitochondrial membrane depolarization, leading to cell death of human fibroblast. These results suggest that mitochondrial membrane depolarization induced by ALA and PBGH treatment might be responsible for inhibition of cell proliferation and death. Taken together, our results propose the possibility that PBGH can be used as one of the effective drugs in human skin disease, psoriasis.

Suspension Culture of Gardenia jasminoides Ellis Cell for Production of Yellow Pigment

  • Kim, Sang-Hwa;Park, Young-Goo;Lee, Yong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.2
    • /
    • pp.142-149
    • /
    • 1991
  • Gardenia callus was induced in MS medium containing $10{\;}{\mu}M$ of 2,4 diphenoxy acetic acid (2,4-D), $1{\;}{\mu}M$ kinetin, and 3% sucrose in the dark. $B_5$ medium was identified to be the most adequate medium for cell growth. Indole-3-acetic acid (IAA) was better growth regulator than 2,4-D not only for cell growth but slso for carotenoid production. Ligt also played a critical role on synthesis of carotenoid. Gardenia cells grown in $B_5$ medium could utilize a polysaccharide, soluble starch, as a carbon source. The cell growth was stimulated in $B_5$ medium fortified with 0.2% yeast extract. The optimum pH for cell growth was 5.7. High density cultures can be maintained by increasing inoculum size and medium concentration accordingly. Specific growth rate and mass doubling time were 0.095 $day^{-1}$ and 7.3 days, respectively. The cell immobilized in alginate tends to formulate more enlarged vacuoles containing yellow pigment compared with those of suspended cell. Carotenoid content of immobilized cell was about $264.4{\;}{\mu}g/g$ fresh weight (F.W.) corresponding twice of the content of suspended cell ($112.08{\;}{\mu}g/g$ F.W.). The color of gardenia cell was shifted from yellow to red when carbohydrase-secreting fungus, Trichoderma reesei, was co-cultivated with gardenia cells.

  • PDF

A Basic Study on the Removal of Iron Ion in Waste Water by the Precipitation Flotation Method (부선법에 의한 폐수중 철이온의 제거에 관한 기돌 연구)

  • 김형석;조동성;오재현
    • Resources Recycling
    • /
    • v.2 no.2
    • /
    • pp.1-8
    • /
    • 1993
  • This study was carried out in order to define the effective collectors and the opitimum conditions for the removal of iron ion in waste water by flotation method. The results obtained in this study are summarized as follows. Fe(II) and Fe(III) were removed effectively at pH7 and 6 respectively by using sodium lauryl sulfate, an anionic collector. The anionic collector, aeropromotor 845, removed both Fe(II) and Fe(III) effectively in pH ranges of from 5 to 9. The cationic collector, trimetyl dodecyl ammonium chloride, removed both Fe(II) and Fe(III) effectively in pH ranges from 10 to 11 and from 4 to 10, respectively. Therefore, Fe(II) and Fe(III) could be effectively removed by forming the iron hydroxide precipitates by simple pH adjustment of the solutions above precipitation point of ferrous and ferric ion by flotation method. Then, the effective pH regulator and collector were NaOH and $Na_2CO_3$,aeropromotor 845 and trimetyl dodecyl ammonium chloride, respectively.

  • PDF

Regulation of melanocyte apoptosis by Stathmin 1 expression

  • Zhang, Yan;Xiong, Jianjun;Wang, Jiali;Shi, Xianping;Bao, Guodong;Zhang, Yang;Zhu, Zhenyu
    • BMB Reports
    • /
    • v.41 no.11
    • /
    • pp.765-770
    • /
    • 2008
  • Undesirable hyperpigmentation that can arise from increased melanocyte activity may be alleviated by targeting active melanocytes for apoptosis. The role of Stathmin 1 as an important regulator of microtubule dynamics is well documented. The current study examined the potential of Stathmin 1-targeting strategies in eliminating active melanocytes. A vector to overexpress Stathmin 1 and vectors to express three distinct small hairpin RNAs to knockdown Stathmin 1 expression in normal melanocytes were produced and in cell cultures acted accordingly. Both overexpression and knockdown of Stathmin 1 led to a marked increase in melanocyte apoptosis, as indicated by the accumulation of apoptotic cells and increased levels of cleaved caspase-3. Both up- and down-regulation of Stathmin 1 expression inhibited the activity of differentiated melanocytes, as indicated by decreases in both melanin production and tyrosinase activity. Taken together, these results indicate that hyperactive melanocytes can be inhibited by altering Stathmin 1 expression.

A Cytosolic Thioredoxin Acts as a Molecular Chaperone for Peroxisome Matrix Proteins as Well as Antioxidant in Peroxisome

  • Du, Hui;Kim, Sunghan;Hur, Yoon-Sun;Lee, Myung-Sok;Lee, Suk-Ha;Cheon, Choong-Ill
    • Molecules and Cells
    • /
    • v.38 no.2
    • /
    • pp.187-194
    • /
    • 2015
  • Thioredoxin (TRX) is a disulfide reductase present ubiquitously in all taxa and plays an important role as a regulator of cellular redox state. Recently, a redox-independent, chaperone function has also been reported for some thioredoxins. We previously identified nodulin-35, the subunit of soybean uricase, as an interacting target of a cytosolic soybean thioredoxin, GmTRX. Here we report the further characterization of the interaction, which turns out to be independent of the disulfide reductase function and results in the co-localization of GmTRX and nodulin-35 in peroxisomes, suggesting a possible function of GmTRX in peroxisomes. In addition, the chaperone function of GmTRX was demonstrated in in vitro molecular chaperone activity assays including the thermal denaturation assay and malate dehydrogenase aggregation assay. Our results demonstrate that the target of GmTRX is not only confined to the nodulin-35, but many other peroxisomal proteins, including catalase (AtCAT), transthyretin-like protein 1 (AtTTL1), and acyl-coenzyme A oxidase 4 (AtACX4), also interact with the GmTRX. Together with an increased uricase activity of nodulin-35 and reduced ROS accumulation observed in the presence of GmTRX in our results, especially under heat shock and oxidative stress conditions, it appears that GmTRX represents a novel thioredoxin that is co-localized to the peroxisomes, possibly providing functional integrity to peroxisomal proteins.

A Study on Characteristics of Power Generation System Using Biogas from the Waste of Pig Farm

  • Huynh, Thanh-Cong;Pham, Xuan-Mai;Nguyen, Dinh-Hung;Tran, Minh-Tien
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.5
    • /
    • pp.435-441
    • /
    • 2010
  • To verify the possibility of a power generation system using biogas from the waste of pig farm for rural electric production, a SI gasoline engine is modified to use biogas fuel and was installed in a 20 KVA power generation system. An electronic speed regulation unit is developed to keep the system speed at 1500 rpm. Experimental investigations have been carried out to examine the performance characteristics of power generation system (such as: system frequency, phase output voltage,$\ldots$). In addition, the operating parameters and output emissions ($NO_x$, HC, and $CO_2$) of biogas-fueled engine are preliminary evaluated and analyzed for the change of system load. Results indicated that the researched power generation system shows a high stability of output voltage and frequency with help of speed regulator. Biogas fuel (mainly $CH_4$ and $CO_2$) has an environmental impact and potential as a green alternative fuel for SI engine and they would not require significant modification of existing engine hardware. Output emissions of biogas-fueled engine are found to be relative low. $NO_x$ emission increases with the increase of output electric power of the power generation system.

The Effect of Fuel Injection Timing on Combustion and Power Characteristics in a DI CNG Engine (직분식 CNG 엔진에서 연료 분사시기의 변화가 연소 및 출력 특성에 미치는 영향)

  • Kang, Jeong-Ho;Yoon, Soo-Han;Lee, Joong-Soon;Park, Jong-Sang;Ha, Jong-Yul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.193-200
    • /
    • 2007
  • Natural gas is one of the most promising alternatives to gasoline and diesel fuels because of its lower harmful emissions, including $CO_2$, and high thermal efficiency. In particular, natural gas is seen as an alternative fuel for heavy-duty Diesel Engines because of the lower resulting emissions of PM, $CO_2$ and $NO_x$. Almost all CNG vehicles use the PFI-type Engine. However, PFI-type CNG Engines have a lower brake horse power, because of reduced volumetric efficiency and lower burning speed. This is a result of gaseous charge and the time losses increase as compared with the DI-type. This study was conducted to investigate the effect of injection conditions (early injection mode, late injection mode) on the combustion phenomena and performances in the or CNG Engine. A DI Diesel Engine with the same specifications used in a previous study was modified to a DI CNG Engine, and injection pressure was constantly kept at 60bar by a two-stage pressure-reducing type regulator. In this study, excess air ratios were varied from 1.0 to the lean limit, at the load conditions 50% throttle open rate and 1700rpm. The combustion characteristics of the or CNG Engine - such as in-cylinder pressure, indicated thermal efficiency, cycle-by-cycle variation, combustion duration and emissions - were investigated. Through this method, it was possible to verify that the combustion duration, the lean limit and the emissions were improved by control of injection timing and the stratified mixture conditions. And combustion duration is affected by not only excess air ratio, injection timing and position of piston but gas flow condition.

Apolipoprotein H: a novel regulator of fat accumulation in duck myoblasts

  • Ziyi, Pan;Guoqing, Du;Guoyu, Li;Dongsheng, Wu;Xingyong, Chen;Zhaoyu, Geng
    • Journal of Animal Science and Technology
    • /
    • v.64 no.6
    • /
    • pp.1199-1214
    • /
    • 2022
  • Apolipoprotein H (APOH) primarily engages in fat metabolism and inflammatory disease response. This study aimed to investigate the effects of APOH on fat synthesis in duck myoblasts (CS2s) by APOH overexpression and knockdown. CS2s overexpressing APOH showed enhanced triglyceride (TG) and cholesterol (CHOL) contents and elevated the mRNA and protein expression of AKT serine/threonine kinase 1 (AKT1), ELOVL fatty acid elongase 6 (ELOVL6), and acetyl-CoA carboxylase 1 (ACC1) while reducing the expression of protein kinase AMP-activated catalytic subunit alpha 1 (AMPK), peroxisome proliferator activated receptor gamma (PPARG), acyl-CoA synthetase long chain family member 1 (ACSL1), and lipoprotein lipase (LPL). The results showed that knockdown of APOH in CS2s reduced the content of TG and CHOL, reduced the expression of ACC1, ELOVL6, and AKT1, and increased the gene and protein expression of PPARG, LPL, ACSL1, and AMPK. Our results showed that APOH affected lipid deposition in myoblasts by inhibiting fatty acid beta-oxidation and promoting fatty acid biosynthesis by regulating the expression of the AKT/AMPK pathway. This study provides the necessary basic information for the role of APOH in fat accumulation in duck myoblasts for the first time and enables researchers to study the genes related to fat deposition in meat ducks in a new direction.

Specific kinesin and dynein molecules participate in the unconventional protein secretion of transmembrane proteins

  • Sung Ho Eun;Shin Hye Noh;Min Goo Lee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.5
    • /
    • pp.435-447
    • /
    • 2024
  • Secretory proteins, including plasma membrane proteins, are generally known to be transported to the plasma membrane through the endoplasmic reticulum-to-Golgi pathway. However, recent studies have revealed that several plasma membrane proteins and cytosolic proteins lacking a signal peptide are released via an unconventional protein secretion (UcPS) route, bypassing the Golgi during their journey to the cell surface. For instance, transmembrane proteins such as the misfolded cystic fibrosis transmembrane conductance regulator (CFTR) protein and the Spike protein of coronaviruses have been observed to reach the cell surface through a UcPS pathway under cell stress conditions. Nevertheless, the precise mechanisms of the UcPS pathway, particularly the molecular machineries involving cytosolic motor proteins, remain largely unknown. In this study, we identified specific kinesins, namely KIF1A and KIF5A, along with cytoplasmic dynein, as critical players in the unconventional trafficking of CFTR and the SARS-CoV-2 Spike protein. Gene silencing results demonstrated that knockdown of KIF1A, KIF5A, and the KIF-associated adaptor protein SKIP, FYCO1 significantly reduced the UcPS of △F508-CFTR. Moreover, gene silencing of these motor proteins impeded the UcPS of the SARS-CoV-2 Spike protein. However, the same gene silencing did not affect the conventional Golgi-mediated cell surface trafficking of wild-type CFTR and Spike protein. These findings suggest that specific motor proteins, distinct from those involved in conventional trafficking, are implicated in the stress-induced UcPS of transmembrane proteins.

Biological activities of some organometalic compounds as artificial nuclease (인공핵산 분해효소로서 몇 가지 유기금속 화합물들의 생물활성)

  • Sung, Nack-Do;Kim, Dae-Whang;Kwon, Byung-Mok;Kim, Tae-Young;Suh, Il-Hwan
    • The Korean Journal of Pesticide Science
    • /
    • v.4 no.1
    • /
    • pp.32-37
    • /
    • 2000
  • A series of transition metal complexes of 3,6-bis(6'-methyl-2'-pyridyl)pyridazine ($L^{1}$) and 3,6-bis(2'-pyridyl)pyridazine ($L^{2}$) as artificial nuclease, $1{\sim}8$ were synthesized. After determining of X-ray crystal structure, hydrolysis rate constants of phosphates, as DNA model compound and biological activities were confirmed. $L^{2}$-Zn(II) complex, 8 was shown the best hydrolysis rate constant. The $L^{2}$-Ni(II) complex, 5 and $L^{2}$-Co(II) complex, 6 showed the highest herbicidal activity against SCP (Scriptus Juncoids) with excellent tolerance to rice, ORY (Oryzae sativa L.). And the $L^{1}$-Co(II) complex, 2, $L^{1}$-Zn(II) complex, 4 and ligand ($L^{1}$ amp; $L^{2}$) displayed above 90% fungicidal activity against MAG (Magnaporthe grisea).

  • PDF