• Title/Summary/Keyword: Co-occurrence probability

Search Result 38, Processing Time 0.019 seconds

Design of Wedge in the Electro-Mechanical Brakes for Commercial Vehicles to Boost Braking Friction Forces (브레이크 마찰력 증가를 위한 상용차용 전기-기계식 브레이크의 쐐기 설계)

  • Lee, Sang Min;Park, Jeonghun;Nam, Kanghyun;Yoo, Chang-Hee;Park, Sang-Shin
    • Tribology and Lubricants
    • /
    • v.34 no.2
    • /
    • pp.55-59
    • /
    • 2018
  • This paper proposes a new type of electro-mechanical wedge brake for commercial vehicles. The brake operates on a novel mechanism for self-boosting braking friction forces using eccentric shafts, and involves wedges that are inserted between the rampbridge and traverse; this self-boosting mechanism is explained herein. A dynamic analysis using ADAMS was conducted, and the findings are reported. The constraint and contact conditions are explained to verify the precision of the dynamic analysis. The dynamic analysis shows that in the proposed mechanism, the self-boosting effect occurs as desired. However, it is also noted that the system has a limitation in terms of the production of unlimited braking forces that can jam the roller inside the wedges. After demonstrating the self-boosting effect, dynamic analyses are performed for several values of the wedge angles and friction coefficients between the brake pads and disks. Conventionally, a lower wedge angle has been suggested owing to its provision of a larger clamping force for given friction coefficients. However, it is noted that lower wedge angles can lead to a higher probability of occurrence of undesirable high braking forces, which can jam the roller into the wedge; thus, a larger wedge angle is preferable for avoiding the undesirable jamming phenomena. These analysis results are presented and discussed herein.

Improving Transmission in Association with the Distance for Military Microwave Communications (군 MicroWave 통신 환경에서의 링크 거리를 고려한 전송 성능 향상 기법)

  • Youn, Jong Taek;Lim, Young Gap;Kim, Young Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.11
    • /
    • pp.1042-1049
    • /
    • 2014
  • In Military MicroWave communication, the distance of link, availability, transmission capacity is the important point in order to design the circuit. Currently, operated by fixed modulation, in the future it will be evolved to the modulation techniques enabled to increase the transmission capacity. It would be hard to consistently guarantee the transmission quality of the high-availability because the occurrence probability of fading increase in terms of the link distance for the case of the long distance. In the case of the modulation techniques for the transmission of high-capacity, as the distance is long, a falling-off in the fade margin from the link budget analysis cause the decrease in the availability. It is difficult to provide QoS guaranteed connection. In this paper, we propose the performance improvement technique of transmission by the variable allocation of the bandwidth and the higher priority transmission technique using setting the ratio of the higher priority capacity in association with the distance of link. Also we suggest the alternative of the calculation for channel transmission capacity to design the circuit.

Development of a Manual for Simulation Training in Preparation for the Fall Disasters of Urban Residential Housing Construction Works and Apply (도시형 생활주택신축공사의 추락재해 발생대비 모의훈련 실시 매뉴얼 개발 및 적용)

  • Kim, Sung Soo
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.3
    • /
    • pp.39-49
    • /
    • 2021
  • According to the recent "Status of Industrial Accidents at the End of December 2020" released by the Ministry of Employment and Labor, each industry is subject to industrial accidents. The number of accident deaths by construction industry, accident deaths by accident type fell, and accident deaths by workplace size were 5 to 49, indicating that most accident deaths occurred due to falling accidents at small construction sites. Therefore, urban living houses are small construction sites, and the probability of falling accidents is very high. Fall simulation training for disaster occurrence is conducted mainly by large construction ordering organizations in the public sector, and it is the first case in Korea that a housing construction company has conducted at a small construction site. This study analyzed and presented the definition, construction characteristics, and safety management status of urban living houses, and developed and spread an emergency relief procedure manual in the event of a fall accident to minimize deaths.

Counterfeit Money Detection Algorithm using Non-Local Mean Value and Support Vector Machine Classifier (비지역적 특징값과 서포트 벡터 머신 분류기를 이용한 위변조 지폐 판별 알고리즘)

  • Ji, Sang-Keun;Lee, Hae-Yeoun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.1
    • /
    • pp.55-64
    • /
    • 2013
  • Due to the popularization of digital high-performance capturing equipments and the emergence of powerful image-editing softwares, it is easy for anyone to make a high-quality counterfeit money. However, the probability of detecting a counterfeit money to the general public is extremely low. In this paper, we propose a counterfeit money detection algorithm using a general purpose scanner. This algorithm determines counterfeit money based on the different features in the printing process. After the non-local mean value is used to analyze the noises from each money, we extract statistical features from these noises by calculating a gray level co-occurrence matrix. Then, these features are applied to train and test the support vector machine classifier for identifying either original or counterfeit money. In the experiment, we use total 324 images of original money and counterfeit money. Also, we compare with noise features from previous researches using wiener filter and discrete wavelet transform. The accuracy of the algorithm for identifying counterfeit money was over 94%. Also, the accuracy for identifying the printing source was over 93%. The presented algorithm performs better than previous researches.

Application of Artificial Neural Network to Improve Quantitative Precipitation Forecasts of Meso-scale Numerical Weather Prediction (중규모수치예보자료의 정량적 강수추정량 개선을 위한 인공신경망기법)

  • Kang, Boo-Sik;Lee, Bong-Ki
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.2
    • /
    • pp.97-107
    • /
    • 2011
  • For the purpose of enhancing usability of NWP (Numerical Weather Prediction), the quantitative precipitation prediction scheme was suggested. In this research, precipitation by leading time was predicted using 3-hour rainfall accumulation by meso-scale numerical weather model and AWS (Automatic Weather Station), precipitation water and relative humidity observed by atmospheric sounding station, probability of rainfall occurrence by leading time in June and July, 2001 and August, 2002. Considering the nonlinear process of ranfall producing mechanism, the ANN (Artificial Neural Network) that is useful in nonlinear fitting between rainfall and the other atmospheric variables. The feedforward multi-layer perceptron was used for neural network structure, and the nonlinear bipolaractivation function was used for neural network training for converting negative rainfall into no rain value. The ANN simulated rainfall was validated by leading time using Nash-Sutcliffe Coefficient of Efficiency (COE) and Coefficient of Correlation (CORR). As a result, the 3 hour rainfall accumulation basis shows that the COE of the areal mean of the Korean peninsula was improved from -0.04 to 0.31 for the 12 hr leading time, -0.04 to 0.38 for the 24 hr leading time, -0.03 to 0.33 for the 36 hr leading time, and -0.05 to 0.27 for the 48 hr leading time.

Image Analysis of Computer Aided Diagnosis using Gray Level Co-occurrence Matrix in the Ultrasonography for Benign Prostate Hyperplasia (전립선비대증 초음파 영상에서 GLCM을 이용한 컴퓨터보조진단의 영상분석)

  • Cho, Jin-Young;Kim, Chang-Soo;Kang, Se-Sik;Ko, Seong-Jin;Ye, Soo-Young
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.3
    • /
    • pp.184-191
    • /
    • 2015
  • Prostate ultrasound is used to diagnose prostate cancer, BPH, prostatitis and biopsy of prostate cancer to determine the size of prostate. BPH is one of the common disease in elderly men. Prostate is divided into 4 blocks, peripheral zone, central zone, transition zone, anterior fibromuscular stroma. BPH is histologically transition zone urethra accompanying excessive nodular hyperplasia causes a lower urinary tract symptoms(LUTS) caused by urethral closure as causing the hyperplastic nodule characterized finding progressive ambient. Therefore, in this study normal transition zone image for hyperplasia prostate and normal transition zone image is analyzed quantitatively using a computer algorithm. We applied texture features of GLCM to set normal tissue 60 cases and BPH tissue 60cases setting analysis area $50{\times}50pixels$ which was analyzed by comparing the six parameters for each partial image. Consequently, Disease recognition detection efficiency of Autocorrelation, Cluster prominence, entropy, Sum average, parameter were high as 92~98%.This could be confirmed by quantitative image analysis to nodular hyperplasia change transition zone of the prostate. This is expected secondary means to diagnose BPH and the data base will be considered in various prostate examination.

Considerations and Alternative Approaches to the Estimation of Local Abundance of Legally Protected Species, the Fiddler Crab, Austruca lactea (법정보호종, 흰발농게(Austruca lactea) 서식 개체수 추정에 대한 검토와 대안)

  • Yoo, Jae-Won;Kim, Chang-Soo;Park, Mi-Ra;Jeong, Su-Young;Lee, Chae-Lin;Kim, Sungtae;Ahn, Dong-Sik;Lee, Chang-Gun;Han, Donguk;Back, Yonghae;Park, Young Cheol
    • Journal of Wetlands Research
    • /
    • v.23 no.2
    • /
    • pp.122-132
    • /
    • 2021
  • We reviewed the methods employed in Korean tidal flat surveys to measure the local abundance of the endangered wildlife and marine protected species, the fiddler crab, Austruca lactea. A complete census for infinite population is impossible even in a limited habitat within a tidal flat, and density estimates from samples strongly vary due to diverse biological and ecological factors. The habitat boundaries and areas shift with periodicities or rhythmic activities of organisms as well as measurement errors. Hence the local abundance calculated from density and habitat areas should be regarded as transient. This conjecture was valid based on the spatio-temporal variations of the density averages, standard error ranges, and spatial distribution of the crab, A. lactea observed for 3 years (2015-2017) in Songdo tidal flat in Incheon. We proposed the potential habitat areas using the occurrence probability of 50% from logistic regression model, reflecting the importance of habitat conservation value as an alternative to local abundance. The spatial shape of potential habitat predicted from a generalized model would remain constant over time unless the species' critical environmental conditions change rapidly. The species-specific model is expected to be used for the introduction of desired species in future habitat restoration/creation projects.

Analysis of Twitter for 2012 South Korea Presidential Election by Text Mining Techniques (텍스트 마이닝을 이용한 2012년 한국대선 관련 트위터 분석)

  • Bae, Jung-Hwan;Son, Ji-Eun;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.141-156
    • /
    • 2013
  • Social media is a representative form of the Web 2.0 that shapes the change of a user's information behavior by allowing users to produce their own contents without any expert skills. In particular, as a new communication medium, it has a profound impact on the social change by enabling users to communicate with the masses and acquaintances their opinions and thoughts. Social media data plays a significant role in an emerging Big Data arena. A variety of research areas such as social network analysis, opinion mining, and so on, therefore, have paid attention to discover meaningful information from vast amounts of data buried in social media. Social media has recently become main foci to the field of Information Retrieval and Text Mining because not only it produces massive unstructured textual data in real-time but also it serves as an influential channel for opinion leading. But most of the previous studies have adopted broad-brush and limited approaches. These approaches have made it difficult to find and analyze new information. To overcome these limitations, we developed a real-time Twitter trend mining system to capture the trend in real-time processing big stream datasets of Twitter. The system offers the functions of term co-occurrence retrieval, visualization of Twitter users by query, similarity calculation between two users, topic modeling to keep track of changes of topical trend, and mention-based user network analysis. In addition, we conducted a case study on the 2012 Korean presidential election. We collected 1,737,969 tweets which contain candidates' name and election on Twitter in Korea (http://www.twitter.com/) for one month in 2012 (October 1 to October 31). The case study shows that the system provides useful information and detects the trend of society effectively. The system also retrieves the list of terms co-occurred by given query terms. We compare the results of term co-occurrence retrieval by giving influential candidates' name, 'Geun Hae Park', 'Jae In Moon', and 'Chul Su Ahn' as query terms. General terms which are related to presidential election such as 'Presidential Election', 'Proclamation in Support', Public opinion poll' appear frequently. Also the results show specific terms that differentiate each candidate's feature such as 'Park Jung Hee' and 'Yuk Young Su' from the query 'Guen Hae Park', 'a single candidacy agreement' and 'Time of voting extension' from the query 'Jae In Moon' and 'a single candidacy agreement' and 'down contract' from the query 'Chul Su Ahn'. Our system not only extracts 10 topics along with related terms but also shows topics' dynamic changes over time by employing the multinomial Latent Dirichlet Allocation technique. Each topic can show one of two types of patterns-Rising tendency and Falling tendencydepending on the change of the probability distribution. To determine the relationship between topic trends in Twitter and social issues in the real world, we compare topic trends with related news articles. We are able to identify that Twitter can track the issue faster than the other media, newspapers. The user network in Twitter is different from those of other social media because of distinctive characteristics of making relationships in Twitter. Twitter users can make their relationships by exchanging mentions. We visualize and analyze mention based networks of 136,754 users. We put three candidates' name as query terms-Geun Hae Park', 'Jae In Moon', and 'Chul Su Ahn'. The results show that Twitter users mention all candidates' name regardless of their political tendencies. This case study discloses that Twitter could be an effective tool to detect and predict dynamic changes of social issues, and mention-based user networks could show different aspects of user behavior as a unique network that is uniquely found in Twitter.