• Title/Summary/Keyword: Co-occurrence Matrix

Search Result 166, Processing Time 0.023 seconds

Detection of Microcalcification Using the Wavelet Based Adaptive Sigmoid Function and Neural Network

  • Kumar, Sanjeev;Chandra, Mahesh
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.703-715
    • /
    • 2017
  • Mammogram images are sensitive in nature and even a minor change in the environment affects the quality of the images. Due to the lack of expert radiologists, it is difficult to interpret the mammogram images. In this paper an algorithm is proposed for a computer-aided diagnosis system, which is based on the wavelet based adaptive sigmoid function. The cascade feed-forward back propagation technique has been used for training and testing purposes. Due to the poor contrast in digital mammogram images it is difficult to process the images directly. Thus, the images were first processed using the wavelet based adaptive sigmoid function and then the suspicious regions were selected to extract the features. A combination of texture features and gray-level co-occurrence matrix features were extracted and used for training and testing purposes. The system was trained with 150 images, while a total 100 mammogram images were used for testing. A classification accuracy of more than 95% was obtained with our proposed method.

Automated Detection of Retinal Nerve Fiber Layer by Texture-Based Analysis for Glaucoma Evaluation

  • Septiarini, Anindita;Harjoko, Agus;Pulungan, Reza;Ekantini, Retno
    • Healthcare Informatics Research
    • /
    • v.24 no.4
    • /
    • pp.335-345
    • /
    • 2018
  • Objectives: The retinal nerve fiber layer (RNFL) is a site of glaucomatous optic neuropathy whose early changes need to be detected because glaucoma is one of the most common causes of blindness. This paper proposes an automated RNFL detection method based on the texture feature by forming a co-occurrence matrix and a backpropagation neural network as the classifier. Methods: We propose two texture features, namely, correlation and autocorrelation based on a co-occurrence matrix. Those features are selected by using a correlation feature selection method. Then the backpropagation neural network is applied as the classifier to implement RNFL detection in a retinal fundus image. Results: We used 40 retinal fundus images as testing data and 160 sub-images (80 showing a normal RNFL and 80 showing RNFL loss) as training data to evaluate the performance of our proposed method. Overall, this work achieved an accuracy of 94.52%. Conclusions: Our results demonstrated that the proposed method achieved a high accuracy, which indicates good performance.

Text-Mining Analyses of News Articles on Schizophrenia (조현병 관련 주요 일간지 기사에 대한 텍스트 마이닝 분석)

  • Nam, Hee Jung;Ryu, Seunghyong
    • Korean Journal of Schizophrenia Research
    • /
    • v.23 no.2
    • /
    • pp.58-64
    • /
    • 2020
  • Objectives: In this study, we conducted an exploratory analysis of the current media trends on schizophrenia using text-mining methods. Methods: First, web-crawling techniques extracted text data from 575 news articles in 10 major newspapers between 2018 and 2019, which were selected by searching "schizophrenia" in the Naver News. We had developed document-term matrix (DTM) and/or term-document matrix (TDM) through pre-processing techniques. Through the use of DTM and TDM, frequency analysis, co-occurrence network analysis, and topic model analysis were conducted. Results: Frequency analysis showed that keywords such as "police," "mental illness," "admission," "patient," "crime," "apartment," "lethal weapon," "treatment," "Jinju," and "residents" were frequently mentioned in news articles on schizophrenia. Within the article text, many of these keywords were highly correlated with the term "schizophrenia" and were also interconnected with each other in the co-occurrence network. The latent Dirichlet allocation model presented 10 topics comprising a combination of keywords: "police-Jinju," "hospital-admission," "research-finding," "care-center," "schizophrenia-symptom," "society-issue," "family-mind," "woman-school," and "disabled-facilities." Conclusion: The results of the present study highlight that in recent years, the media has been reporting violence in patients with schizophrenia, thereby raising an important issue of hospitalization and community management of patients with schizophrenia.

Analysis of characteristics for computer-aided diagnosis of breast ultrasound imaging (유방 초음파 영상의 컴퓨터 보조 진단을 위한 특성 분석)

  • Eum, Sang-hee;Nam, Jae-hyun;Ye, soo-young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.307-310
    • /
    • 2021
  • In the recent years, studies using Computer-Aided Diagnostics(CAD) have been actively conducted, such as signal and image processing technology using breast ultrasound images, automatic image optimization technology, and automatic detection and classification of breast masses. As computer diagnostic technology is developed, it is expected that early detection of cancer will proceed accurately and quickly, reducing health insurance and test ice for patients, and eliminating anxiety about biopsy. In this paper, a quantitative analysis of tumors was conducted in ultrasound images using a gray level co-occurrence matrix(GLCM) to experiment with the possibility of use for computer assistance diagnosis.

  • PDF

Tack Coat Inspection Using Unmanned Aerial Vehicle and Deep Learning

  • da Silva, Aida;Dai, Fei;Zhu, Zhenhua
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.784-791
    • /
    • 2022
  • Tack coat is a thin layer of asphalt between the existing pavement and asphalt overlay. During construction, insufficient tack coat layering can later cause surface defects such as slippage, shoving, and rutting. This paper proposed a method for tack coat inspection improvement using an unmanned aerial vehicle (UAV) and deep learning neural network for automatic non-uniform assessment of the applied tack coat area. In this method, the drone-captured images are exploited for assessment using a combination of Mask R-CNN and Grey Level Co-occurrence Matrix (GLCM). Mask R-CNN is utilized to detect the tack coat region and segment the region of interest from the surroundings. GLCM is used to analyze the texture of the segmented region and measure the uniformity and non-uniformity of the tack coat on the existing pavements. The results of the field experiment showed both the intersection over union of Mask R-CNN and the non-uniformity measured by GLCM were promising with respect to their accuracy. The proposed method is automatic and cost-efficient, which would be of value to state Departments of Transportation for better management of their work in pavement construction and rehabilitation.

  • PDF

The Analysis of Knowledge Structure using Co-word Method in Quality Management Field (동시단어분석을 이용한 품질경영분야 지식구조 분석)

  • Park, Man-Hee
    • Journal of Korean Society for Quality Management
    • /
    • v.44 no.2
    • /
    • pp.389-408
    • /
    • 2016
  • Purpose: This study was designed to analyze the behavioral change of knowledge structures and the trends of research topics in the quality management field. Methods: The network structure and knowledge structure of the words were visualized in map form using co-word analysis, cluster analysis and strategic diagram. Results: Summarizing the research results obtained in this study are as follows. First, the word network derived from co-occurrence matrix had 106 nodes and 5,314 links and its density was analyzed to 0.95. Average betweenness centrality of word network was 2.37. In addition, average closeness centrality and average eigenvector centrality of word network were 0.01. Second, by applying optimal criteria of cluster decision and K-means algorithm to word co-occurrence matrix, 106 words were grouped into seven clusters such as standard & efficiency, product design, reliability, control chart, quality model, 6 sigma, and service quality. Conclusion: According to the results of strategic diagram analysis over time, the traditional research topics of quality management field related to reliability, 6 sigma, control chart topics in the third quadrant were revealed to be declined for their study importance. Research topics related to product design and customer satisfaction were found to be an important research topic over analysis periods. Research topic related to management innovation was emerging state and the scope of research topics related to process model was extended to research topics with system performance. Research topic related to service quality located in the first quadrant was analyzed as the key research topic.

Land Cover Classification of High-Spatial Resolution Imagery using Fixed-Wing UAV (고정익 UAV를 이용한 고해상도 영상의 토지피복분류)

  • Yang, Sung-Ryong;Lee, Hak-Sool
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.4
    • /
    • pp.501-509
    • /
    • 2018
  • Purpose: UAV-based photo measurements are being researched using UAVs in the space information field as they are not only cost-effective compared to conventional aerial imaging but also easy to obtain high-resolution data on desired time and location. In this study, the UAV-based high-resolution images were used to perform the land cover classification. Method: RGB cameras were used to obtain high-resolution images, and in addition, multi-distribution cameras were used to photograph the same regions in order to accurately classify the feeding areas. Finally, Land cover classification was carried out for a total of seven classes using created ortho image by RGB and multispectral camera, DSM(Digital Surface Model), NDVI(Normalized Difference Vegetation Index), GLCM(Gray-Level Co-occurrence Matrix) using RF (Random Forest), a representative supervisory classification system. Results: To assess the accuracy of the classification, an accuracy assessment based on the error matrix was conducted, and the accuracy assessment results were verified that the proposed method could effectively classify classes in the region by comparing with the supervisory results using RGB images only. Conclusion: In case of adding orthoimage, multispectral image, NDVI and GLCM proposed in this study, accuracy was higher than that of conventional orthoimage. Future research will attempt to improve classification accuracy through the development of additional input data.

Classification of Fall Crops Using Unmanned Aerial Vehicle Based Image and Support Vector Machine Model - Focusing on Idam-ri, Goesan-gun, Chungcheongbuk-do - (무인기 기반 영상과 SVM 모델을 이용한 가을수확 작물 분류 - 충북 괴산군 이담리 지역을 중심으로 -)

  • Jeong, Chan-Hee;Go, Seung-Hwan;Park, Jong-Hwa
    • Journal of Korean Society of Rural Planning
    • /
    • v.28 no.1
    • /
    • pp.57-69
    • /
    • 2022
  • Crop classification is very important for estimating crop yield and figuring out accurate cultivation area. The purpose of this study is to classify crops harvested in fall in Idam-ri, Goesan-gun, Chungcheongbuk-do by using unmanned aerial vehicle (UAV) images and support vector machine (SVM) model. The study proceeded in the order of image acquisition, variable extraction, model building, and evaluation. First, RGB and multispectral image were acquired on September 13, 2021. Independent variables which were applied to Farm-Map, consisted gray level co-occurrence matrix (GLCM)-based texture characteristics by using RGB images, and multispectral reflectance data. The crop classification model was built using texture characteristics and reflectance data, and finally, accuracy evaluation was performed using the error matrix. As a result of the study, the classification model consisted of four types to compare the classification accuracy according to the combination of independent variables. The result of four types of model analysis, recursive feature elimination (RFE) model showed the highest accuracy with an overall accuracy (OA) of 88.64%, Kappa coefficient of 0.84. UAV-based RGB and multispectral images effectively classified cabbage, rice and soybean when the SVM model was applied. The results of this study provided capacity usefully in classifying crops using single-period images. These technologies are expected to improve the accuracy and efficiency of crop cultivation area surveys by supplementing additional data learning, and to provide basic data for estimating crop yields.

Color Laser Printer Identification through Discrete Wavelet Transform and Gray Level Co-occurrence Matrix (이산 웨이블릿 변환과 명암도 동시발생 행렬을 이용한 컬러 레이저프린터 판별 알고리즘)

  • Baek, Ji-Yeoun;Lee, Heung-Su;Kong, Seung-Gyu;Choi, Jung-Ho;Yang, Yeon-Mo;Lee, Hae-Yeoun
    • The KIPS Transactions:PartB
    • /
    • v.17B no.3
    • /
    • pp.197-206
    • /
    • 2010
  • High-quality and low-price digital printing devices are nowadays abused to print or forge official documents and bills. Identifying color laser printers will be a step for media forensics. This paper presents a new method to identify color laser printers with printed color images. Since different printer companies use different manufactural systems, printed documents from different printers have little difference in visual. Analyzing this artifact, we can identify the color laser printers. First, high-frequency components of images are extracted from original images with discrete wavelet transform. After calculating the gray-level co-occurrence matrix of the components, we extract some statistical features. Then, these features are applied to train and classify the support vector machine for identifying the color laser printer. In the experiment, total 2,597 images of 7 printers (HP, Canon, Xerox DCC400, Xerox DCC450, Xerox DCC5560, Xerox DCC6540, Konica), are tested to classify the color laser printer. The results prove that the presented identification method performs well with 96.9% accuracy.

Implementation of GLCM/GLDV-based Texture Algorithm and Its Application to High Resolution Imagery Analysis (GLCM/GLDV 기반 Texture 알고리즘 구현과 고 해상도 영상분석 적용)

  • Lee Kiwon;Jeon So-Hee;Kwon Byung-Doo
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.2
    • /
    • pp.121-133
    • /
    • 2005
  • Texture imaging, which means texture image creation by co-occurrence relation, has been known as one of the useful image analysis methodologies. For this purpose, most commercial remote sensing software provides texture analysis function named GLCM (Grey Level Co-occurrence Matrix). In this study, texture-imaging program based on GLCM algorithm is newly implemented. As well, texture imaging modules for GLDV (Grey Level Difference Vector) are contained in this program. As for GLCM/GLDV Texture imaging parameters, it composed of six types of second order texture functions such as Homogeneity, Dissimilarity, Energy, Entropy, Angular Second Moment, and Contrast. As for co-occurrence directionality in GLCM/GLDV, two direction modes such as Omni-mode and Circular mode newly implemented in this program are provided with basic eight-direction mode. Omni-mode is to compute all direction to avoid directionality complexity in the practical level, and circular direction is to compute texture parameters by circular direction surrounding a target pixel in a kernel. At the second phase of this study, some case studies with artificial image and actual satellite imagery are carried out to analyze texture images in different parameters and modes by correlation matrix analysis. It is concluded that selection of texture parameters and modes is the critical issues in an application based on texture image fusion.