• Title/Summary/Keyword: Co-metabolites

Search Result 205, Processing Time 0.024 seconds

The role of lipids in the pathogenesis and treatment of type 2 diabetes and associated co-morbidities

  • Erion, Derek M.;Park, Hyun-Jun;Lee, Hui-Young
    • BMB Reports
    • /
    • v.49 no.3
    • /
    • pp.139-148
    • /
    • 2016
  • In the past decade, the incidence of type 2 diabetes (T2D) has rapidly increased, along with the associated cardiovascular complications. Therefore, understanding the pathophysiology underlying T2D, the associated complications and the impact of therapeutics on the T2D development has critical importance for current and future therapeutics. The prevailing feature of T2D is hyperglycemia due to excessive hepatic glucose production, insulin resistance, and insufficient secretion of insulin by the pancreas. These contribute to increased fatty acid influx into the liver and muscle causing accumulation of lipid metabolites. These lipid metabolites cause dyslipidemia and non-alcoholic fatty liver disease, which ultimately contributes to the increased cardiovascular risk in T2D. Therefore, understanding the mechanisms of hepatic insulin resistance and the specific role of liver lipids is critical in selecting and designing the most effective therapeutics for T2D and the associated co-morbidities, including dyslipidemia and cardiovascular disease. Herein, we review the effects and molecular mechanisms of conventional anti-hyperglycemic and lipid-lowering drugs on glucose and lipid metabolism.

Profiling of the leaves and stems of Curcuma longa using LC-ESI-MS and HPLC analysis

  • Gia Han Tran;Hak-Dong Lee;Sun-Hyung Kim;Seok Lee;Sanghyun Lee
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.338-344
    • /
    • 2023
  • Curcuma longa is a plant belonging to the genus Curcuma and is distributed across various Asian regions. This plant is widely known for its rhizomes, which possess a variety of pharmacological properties. However, although the leaves and stems of this plant also contain several health-promoting secondary metabolites, very few studies have characterized these compounds. Therefore, our study sought to quantify the secondary metabolites from the leaves and stems of Curcuma longa L. (LSCL) using liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) and high-performance liquid chromatography (HPLC). Our LC-ESI-MS analyses detected twenty-one phenolic compounds in the LSCL, among which fifteen compounds were detected via HPLC analysis. Four compounds, namely vanillic acid (0.129 mg/g), p-coumaric acid (0.431 mg/g), 4-methylcatechol (0.199 mg/g), and afzelin (0.074 mg/g) were then quantified. These findings suggest that LSCL is rich in secondary metabolites and holds potential as a valuable resource for the development of functional and nutritional supplements in the future.

Microbial Metabolism of trans-2-Dodecenal

  • Kim, Hyun-Jung;Park, Hae-Suk;Lee, Ik-Soo
    • Natural Product Sciences
    • /
    • v.17 no.1
    • /
    • pp.19-22
    • /
    • 2011
  • Microbial metabolism of trans-2-dodecenal (1) was studied. Screening studies have revealed a number of microorganisms that are capable of metabolizing trans-2-dodecenal (1). Scale-up fermentation with Penicillium chrysogenum resulted in the production of two microbial metabolites. These metabolites were identified using spectroscopic methods as trans-2-dodecenol (2) and trans-3-dodecenoic acid (3).

Metabolism of Ginseng Saponins by Human Intestinal Bacteria (Park II) (사람의 장내세균에 의한 인삼 사포닌의 대사(제2보))

  • Hasegawa, Hideo;Ha, Joo-Young;Park, Se-Ho;Matumiya, Satoshi;Uchiyama, Masamori;Huh, Jae-Doo;Sung, Jong-Hwan
    • Korean Journal of Pharmacognosy
    • /
    • v.28 no.1
    • /
    • pp.35-41
    • /
    • 1997
  • Following ginsenoside-Rb1-hydrolyzing assay, strictly anaerobic bacteria were isolated from human feces and identified as Prevotella oris. The bacteria hydrolyzed ginsenoside Rb1 and Rd to $20-O-{\beta}-D-glucopyranosyl-20(S)-protopanaxadiol$ (I), ginsenoside Rb2 to $20-O-[{\alpha}-L-arabinofuranosyl (1{\rightarrow}6)-{\beta}-D-glucopyranosyl] - 20(S)-protopanaxadiol$ (ll) and ginsenoside Rc to $20-O-[{\alpha}-L-arabinofuranosyl (1{\rightarrow} 6){\beta}-D-g1ucopyranosyl]-20(S)-protopanaxadiol$ (III) like fecal microflora, but did not attack ginsenoside Re nor Rgl (Protopanaxatriol-type). Pharmacokinetic studies of ginseng saponins was also performed using specific pathogen free rats and demonstrated that the intestinal bacterial metabolites I-111, 20(S)- protopanaxatriol(IV) and 20(S)-protopanaxadiol(V) were absorbed from the intestines to $blood(0.4-5.1\;{\mu}g/ml)$ after oral administration with total saponin(1 g/kg/day).

  • PDF

Bioavailability of Fermented Korean Red Ginseng

  • Lee, Hyun-Jung;Jung, Eun-Young;Lee, Hyun-Sun;Kim, Bong-Gwan;Kim, Jeong-Hoon;Yoon, Taek-Joon;Oh, Sung-Hoon;Suh, Hyung-Joo
    • Preventive Nutrition and Food Science
    • /
    • v.14 no.3
    • /
    • pp.201-207
    • /
    • 2009
  • In an effort to improve ginsenoside bioavailability, the ginsenosides of fermented red ginseng were examined with respect to bioavailability and physiological activity. The results showed that the fermented red ginseng (FRG) had a high level of ginsenoside metabolites. The total ginsenoside contents in non-fermented red ginseng (NFRG) and FRG were 35715.2 ${\mu}g$/mL and 34822.9 ${\mu}g$/mL, respectively. However, RFG had a higher content (14914.3 ${\mu}g$/mL) of ginsenoside metabolites (Rg3, Rg5, Rk1, CK, Rh1, F2, and Rg2) compared to NFRG (5697.9 ${\mu}g$/mL). The skin permeability of RFG was higher than that of NFRG using Franz diffusion cells. Particularly, after 5 hr, the skin permeability of RFG was significantly (p<0.05) higher than that of NFRG. Using everted instestinal sacs of rats, RFG showed a high transport level (10.3 mg of polyphenols/g sac) compared to NFRG (6.67 of mg of polyphenols/g sac) after 1 hr. After oral administration of NFRG and FRG to rats, serum concentrations were determined by HPLC. Peak concentrations of Rk1, Rh1, Rc, and Rg5 were approximately 1.64, 2.35, 1.13, and 1.25-fold higher, respectively, for FRG than for NFRG. Furthermore, Rk1, Rh1, and Rg5 increased more rapidly in the blood by the oral administration of FRG versus NFRG. FRG had dramatically improved bioavailability compared to NFRG as indicated by skin permeation, intestinal permeability, and ginsenoside levels in the blood. The significantly greater bioavailability of FRG may have been due to the transformation of its ginsenosides by fermentation to more easily absorbable forms (ginsenoside metabolites).

Induction of Fungal Secondary Metabolites by Co-Culture with Actinomycete Producing HDAC Inhibitor Trichostatins

  • Gwi Ja Hwang;Jongtae Roh;Sangkeun Son;Byeongsan Lee;Jun-Pil Jang;Jae-Seoun Hur;Young-Soo Hong;Jong Seog Ahn;Sung-Kyun Ko;Jae-Hyuk Jang
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.11
    • /
    • pp.1437-1447
    • /
    • 2023
  • A recently bioinformatic analysis of genomic sequences of fungi indicated that fungi are able to produce more secondary metabolites than expected. Despite their potency, many biosynthetic pathways are silent in the absence of specific culture conditions or chemical cues. To access cryptic metabolism, 108 fungal strains isolated from various sites were cultured with or without Streptomyces sp. 13F051 which mainly produces trichostatin analogues, followed by comparison of metabolic profiles using LC-MS. Among the 108 fungal strains, 14 produced secondary metabolites that were not recognized or were scarcely produced in mono-cultivation. Of these two fungal strains, Myrmecridium schulzeri 15F098 and Scleroconidioma sphagnicola 15S058 produced four new compounds (1-4) along with a known compound (5), demonstrating that all four compounds were produced by physical interaction with Streptomyces sp. 13F051. Bioactivity evaluation indicated that compounds 3-5 impede migration of MDA-MB-231 breast cancer cells.

Fate of Bentazon Metabolites in Soils

  • Cha, In-Cheol;Lee, Kyu-Seong;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.936-942
    • /
    • 2012
  • This review was to elucidate the fate of Bentazon(3-isopropyl-1H-2,1,3-benzothiadiazin-4(3H)-one-2,2-dioxide) and its metabolites in soil. Bentazon is rapidly degraded to form polar metabolites which are mostly adsorbed to soil components, such as humin or fulvic acid, as non extractable forms and mineralized into $CO_2$ by light or micro-organisms in both aerobic or nonaerobic condition. The degradation of Bentazon is dependent on the rate of organic matters in soil and the use of land for the tillage. The degradation rate is decreased as the amount of organic matters in soil increases and if the land is under use for tillage. Sorption and mobility of Bentazon depends on soil pH and the content of organic matters in soil. Usually, the sorption of the metabolites of Bentazon is decreased with increase in the mobility and pH. Almost all of Bentazon is degraded within rhizosphere or forms conjugate bonds with soil organic matters before it reaches to the ground water.

Metabolism and drug interactions of Korean ginseng based on the pharmacokinetic properties of ginsenosides: Current status and future perspectives

  • Jong Dae Park
    • Journal of Ginseng Research
    • /
    • v.48 no.3
    • /
    • pp.253-265
    • /
    • 2024
  • Orally administered ginsenosides, the major active components of ginseng, have been shown to be biotransformed into a number of metabolites by gastric juice, digestive and bacterial enzymes in the gastrointestinal tract and also in the liver. Attention is brought to pharmacokinetic studies of ginseng that need further clarification to better understand the safety and possible active mechanism for clinical application. Experimental results demonstrated that ginsenoside metabolites play an important role in the pharmacokinetic properties such as drug metabolizing enzymes and drug transporters, thereby can be applied as a metabolic modulator. Very few are known on the possibility of the consistency of detected ginsenosides with real active metabolites if taken the recommended dose of ginseng, but they have been found to act on the pharmacokinetic key factors in any clinical trial, affecting oral bioavailability. Since ginseng is increasingly being taken in a manner more often associated with prescription medicines, ginseng and drug interactions have been also reviewed. Considering the extensive oral administration of ginseng, the aim of this review is to provide a comprehensive overview and perspectives of recent studies on the pharmacokinetic properties of ginsenosides such as deglycosylation, absorption, metabolizing enzymes and transporters, together with ginsenoside and drug interactions.

Hydrophillic Interaction Chromatography-tandem Mass Spectrometry Method for Identification and Quantitation of 5-MeO-DIPT and its Metabolites in Rat Urine

  • Kim, Yoon;Kim, Un-Yong;In, Moon-Kyo;Lee, Jae-Ick;Kwon, Oh-Seung;Yoo, Hye-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1158-1164
    • /
    • 2011
  • 5-Methoxy-N,N-diisopropyltryptamine (5-MeO-DIPT), a psychoactive tryptamine derivative, is a hallucinogenic drug of abuse. In this study, 5-OH-DIPT and its metabolites were identified and the quantitative method was developed and validated by using hydrophilic interaction chromatography-tandem mass spectrometry (HILICMS/MS). Chromatographic separation was achieved on an Atlantis HILIC silica column ($5{\mu}m$, $100{\times}2.1\;mm$). The metabolites of 5-MeO-DIPT in rat urine were characterized via Q1 scanning and product ion scanning. As a consequence, 5-MeO-IPT, 5-OH-DIPT, 6-OH-5-MeO-DIPT and their glucuronide conjugates were detected and identified as the metabolites of 5-MeO-DIPT. Subsequently, a quantitative method for 5-MeO-DIPT and its major metabolites, 5-MeO-IPT and 5-OH-DIPT, was developed in multiple reactions monitoring (MRM) mode. The calibration curves for all analytes evidenced good linearity over the concentration range of 1-1000 ng/mL with linear correlation co-efficients ($r^2$) in excess of 0.99. The intra- and inter-day accuracy and precision were 92.2-110.2% and 1.5-9.9%, respectively.