• 제목/요약/키워드: Co-luminescence

검색결과 142건 처리시간 0.03초

희토류 이온(Er/Yb)이 도핑된 LaPO4 나노입자의 합성과 발광특성 (Preparation and Luminescent Properties of LaPO4:Re (Re=Er, Yb) Nanoparticles)

  • 오재석;이택혁;석상일;정하균
    • 한국재료학회지
    • /
    • 제14권4호
    • /
    • pp.270-275
    • /
    • 2004
  • Due to the luminescence by$ Er ^{ 3+}$ activator, Er-doped $LaPO_4$ powders can be applied for optical amplification materials. In this study, $LaPO_4$:Er nanoparticles were synthesized in solution system using a high-boiling coordinating solvent and their properties were investigated through various spectroscopic techniques. The nanoparticles were to take a single phase of monazite structure by a X-ray diffraction analysis and to have the 5-6 nm of particles size with narrow size distribution by a TEM. And it was confirmed by the EA and FT-IR analyses that the surfaces of nanoparticles are coordinated with the solvent molecules, which will possibly keep from agglomerating between LaPO$_4$:Er nanoparticles. In the emission spectrum of $LaPO_4$:Er nanoparticle at NIR region, on the other hand, it was measured that the emission intensity is very weak, which is due to the transition from $^4$$I_{(13/2)}$ to $^4$$I_{(15/2)}$ of $Er^{3+ }$ion. It was interpreted that the weak luminescence of $LaPO_4$:Er is originated from the hydroxyl groups adsorbed on the surfaces of the nanoparticles, because OH group acts as an efficient quencher for the $^4$$I_{(13/2)}$ \longrightarrow $^4$$I_{(15/2)}$ emission of $Er^{3+}$ activator. But the co-doping of Yb$^{3+}$ as a sensitizer in this nanoparticle results in the increase of the emission intensity at 1539 nm due to the effective energy transfer from $Yb^{3+}$ to $Er^{3+}$ . In addition, the synthesized nanoparticles exhibited good dispersibility with some polymers and effective luminescence at NIR region.n.

An Approach to Develop New Ternary Oxide Phosphors;Reduction of Defects by Impurity Addition

  • Yamamoto, Hajime;Okamoto, Shinji
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.239-242
    • /
    • 2002
  • Luminescence efficiency of phosphors, $SrTiO_3;Pr^{3+}$ and $SrIn_2O_4:Pr^{3+}$, is increased remarkably by III-group impurities. This effect is explained by a picture that carriers thermally released from impurity-induced traps supply energy to $Pr^{3+}$ ions. The impurities also improve carrier transport efficiency by reducing lattice defects. This picture indicates a possibility to develop new ternary oxide phosphors.

  • PDF

New vanadate-phosphate phosphors for lighting application

  • Toda, Kenji
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.125-126
    • /
    • 2009
  • In this study, we report the room temperature synthesis and luminescence properties of white-light-emitting Rb(V,P)$O_3$. The vanadate phosphor, RbV$O_3$, was synthesized by simple mixing of $RbCO_3$ and $V_2O_5$ at room temperature in air. New direct room temperature solidstate reaction is a cost-effective method to synthesize the above luminescent materials.

  • PDF

LED용Mg2+·Ba2+Co-Doped Sr2SiO4:Eu 노란색 형광체의 발광특성 (Luminescence Characteristics of Mg2+·Ba2+ Co-Doped Sr2SiO4:Eu Yellow Phosphor for Light Emitting Diodes)

  • 최경재;지순덕;김창해;이상혁;김호건
    • 한국세라믹학회지
    • /
    • 제44권3호
    • /
    • pp.147-151
    • /
    • 2007
  • An improvement for the efficiency of the $Sr_{2}SiO_{4}:Eu$ yellow phosphor under the $450{\sim}470\;nm$ excitation range have been achieved by adding the co-doping element ($Mg^{2+}\;and\;Ba^{2+}$) in the host. White LEDs were fabricated through an integration of an blue (InGaN) chip (${\lambda}_{cm}=450\;nm$) and a blend of two phosphors ($Mg^{2+},\;Ba^{2+}\;co-doped\;Sr_{2}SiO_{4}:Eu$ yellow phosphor+CaS:Eu red phosphor) in a single package. The InGaN-based two phosphor blends ($Mg^{2+},\;Ba^{2+}\;co-doped\;Sr_{2}SiO_{4}:Eu$ yellow phosphor+CaS:Eu red phosphor) LEDs showed three bands at 450 nm, 550 nm and 640 nm, respectively. The 450 nm emission band was due to a radiative recombination from an InGaN active layer. This 450 nm emission was used as an optical transition of the $Mg^{2+},\;Ba^{2+}\;co-doped\;Sr_{2}SiO_{4}:Eu$ yellow phosphor+CaS:Eu red phosphor. As a consequence of a preparation of white LEDs using the $Mg^{2+},\;Ba^{2+}\;co-doped\;Sr_{2}SiO_{4}:Eu$ yellow phosphor+CaS:Eu red phosphor yellow phosphor and CaS:Eu red phosphor, the highest luminescence efficiency was obtained at the 0.03 mol $Ba^{2+}$ concentration. At this time, the white LEDs showed the CCT (5300 K), CRI (89.9) and luminous efficacy (17.34 lm/W).

Influence of HMDS additive on the properties of YAG:Ce nanophosphor

  • 최규만;김여환;임해진;윤상옥
    • 한국정보전자통신기술학회논문지
    • /
    • 제4권1호
    • /
    • pp.61-67
    • /
    • 2011
  • YAG:Ce 형광제 제조에 있어서 공침(co-precipitation) 후 n-butanol 공비증류(azeotropic distillation)시 HMDS(hexadimethyldisilazane)를 첨가하였을 때, 형광체가 광학특성에 미치는 영향에 관하여 연구하였다. 물과 유기용제에 의한 공비증류 시 유기용제의 분자량이 크면 표면의 수소결합이 유기용제로 치환됨으로서 표면장력을 감소시켜 분체의 원형화(conglobation)와 응집(agglomerate)을 감소시키므로 유기용제로 n-butanol보다 분자량이 큰 HMDS을 첨가하였다. N-butanol 만을 사용한 형광체가 HMDS를 첨가한 것 보다 응집(agglomerate)되는 현상이 감소하였으며 우수한 광학적 특성을 나타내었다.

Mn4+ 이온이 도핑된 알루미네이트계 형광체 합성과 발광특성 (Synthesis and Luminescent Properties of Aluminate-based Phosphors Doped with Mn4+ Ions)

  • 박정규;김영진
    • 한국세라믹학회지
    • /
    • 제51권1호
    • /
    • pp.37-42
    • /
    • 2014
  • $Mn^{4+}$-doped $CaAl_4O_7$ ($CA_2$) and $CaAl_{12}O_{19}$ ($CA_6$) powders were prepared under different conditions, with changes in the amounts of flux, Mn concentration, and mole ratio of $Al_2O_3$ to $CaCO_3$ in the starting mixtures, which affected the structure and the luminescence. $CA_2:Mn^{4+}$ and $CA_6:Mn^{4+}$ had the same excitation and emission spectra but with different intensities. The excitation spectra exhibited broad bands (320 - 470 nm) centered at 395 nm, while red emission bands were observed at 656 nm. The emission intensity of $CA_6:Mn^{4+}$ was nearly twice as high as that of $CA_2:Mn^{4+}$, as the $Mn^{4+}$ ions were located in an octahedral crystal field in the $CA_6$, but not in the $CA_2$.

유로피움-활성화 칼슘 알루미늄 실리케이트 형광체 연구 (Study of Europium-activated Calcium Aluminium Silicate Phosphors)

  • 황정하;박주석;장보윤;남산;김준수;유순재
    • 한국전기전자재료학회논문지
    • /
    • 제19권11호
    • /
    • pp.1020-1024
    • /
    • 2006
  • Europium$(Eu^{2+}\;or\;Eu^{3+})$-activated calcium aluminium silicate phosphors were synthesized for the first time and the structures and luminescence characteristics of these phosphors were investigated. The phosphors in this study emitted blue, green, and even red light depending on the starting milterials and annealing conditions for synthesis. In addition, the structure was also changed when the different starting materials were used. When $CaCO_3$ was used as a starting material, tetragonal $Ca_2Al_2SiO_7$ was formed. However, pure green light was emitted when the annealing was conducted in reduced atmosphere and red one was emitted by annealing in air. In the case of $CaSiO_3$ as a starting material, triclinic $CaAl_2Si_2O_8$ was formed and only pure blue emission was observed. Moreover, this blue phosphor exhibited higher intensity than that of commercial YAG:Ce phosphor, which showed the possibility of application on the phosphor for new light source such as a UV-LED.

Development and Performance Testing of a Time-resolved OSL Measurement System

  • Hong, Duk-Geun;Kim, Myung-Jin
    • Journal of Radiation Protection and Research
    • /
    • 제42권1호
    • /
    • pp.69-76
    • /
    • 2017
  • Background: Time-resolved optically stimulated luminescence (TR-OSL) is a very useful method for calculating the lifetimes of crystalline quartz and feldspar. Materials and Methods: A compact TR-OSL system was developed, comprising a heater assembly manufactured using Kanthal wire, 2 powerful blue light-emitting diodes (LED, LXHL-PB02) for optical stimulation equipped with VIS liquid light guides, and a photomultiplier tube combined with an optical filter for luminescence detection. A pulse generated from the data acquisition board (NI PCI 6250) was used to initiate on/off signals in LED and TR-OSL measurements. Results and Discussion: The TR-OSL and background signals measured using this TR-OSL system using quartz samples were very similar to those reported in a previous study. Additionally, the lifetimes of the build-up and TR-OSL signals were calculated as $27.4{\pm}2.2{\mu}s$ and $30.3{\pm}0.6{\mu}s$, respectively, in good agreement with the findings of a previous study. Conclusion: It was concluded that the developed TR-OSL system was very reliable for TR-OSL signal measurements and lifetime calculations.

백색 UV-LED를 위한 $Eu^{2+}$-활성화 칼슘 알루미늄 실리케이트 형광체 연구 (The Study of $Eu^{2+}$-activated Calcium Aluminium Silicate Phosphors for White UV-LED)

  • 황정하;장보윤;박주석
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.32-35
    • /
    • 2006
  • For the white UV-LED applications, $Eu^{2+}$-activated calcium aluminium silicate phosphors were synthesized for the first time and the structures and luminescence characteristics of these phosphors were investigated. The phosphors in this study emitted blue. green or blue-green light depending on the starting materials for synthesis. In addition, the structure was also changed when the different starting materials were used. When CaO and $CaCO_3$ was used as a starting material. tetragonal $Ca_2Al_2SiO_7$ was formed and blue-green and pure green light was emitted. respectively. However. in the case of $CaSiO_3$, triclinic $CaAl_2Si2O_8$ was formed and only pure blue emission was detected. The maximum emission intensity was obtained from $CaAl_2Si_2O_8:Eu^{2+}$ phosphors, which intensity was about 1.4 times higher than that of YAG:$Ce^{3+}$ phosphor used for blue LED.

  • PDF

LED용 Ba2+ Co-Doped Sr2SiO4:Eu 황색 형광체의 발광특성 (Luminescence Characteristics of Ba2+ Co-Doped Sr2SiO4:Eu Yellow Phosphor for Light Emitting Diodes)

  • 최경재;박정규;김경남;김창해;김호건
    • 한국세라믹학회지
    • /
    • 제43권3호
    • /
    • pp.169-172
    • /
    • 2006
  • We have synthesized a $Eu^{2+}-activated\;{(Sr,Ba)}_2SiO_4$ yellow phosphor and investigated the development of blue LEDs by combining the phosphor with a InGaN blue LED chip (${\lambda}_{em}$=405 nm). The InGaN-based ${(Sr,Ba)}_2SiO_{4}:Eu$ LED lamp shows two bands at 405 nm and 550 nm. The 405 nm emission band is due to a radiative recombination from a InGaN active layer. This 405 nm emission was used as an optical transition of the ${(Sr,Ba)}_2SiO_{4}:Eu$ phosphor. The 550 nm emission band is ascribed to a radiative recombination of $Eu^{2+}$ impurity ions in the ${(Sr,Ba)}_2SiO_4$ host matrix. In the preparation of UV Yellow LED Lamp with ${(Sr,Ba)}_2SiO_{4}:Eu$ yellow phosphor, the highest luminescence efficiency was obtained at the epoxy-to-yellow phosphor ratio of 1:0.45. At this ratio, the CIE chromaticity was x=0.4097 and y=0.5488.