• Title/Summary/Keyword: Co-kriging

Search Result 69, Processing Time 0.03 seconds

Comparative Evaluation among Different Kriging Techniques applied to GOSAT CO2 Map for North East Asia (GOSAT 기반의 동북아시아 CO2 분포도에 적용된 크리깅 기법의 비교평가)

  • Choi, Jin Ho;Um, Jung-Sup
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.6
    • /
    • pp.879-890
    • /
    • 2011
  • The GOSAT (Greenhouse gases Observing SATellite) data provide new opportunities the most regionally complete and up-to-date assessment of $CO_2$. However, in practice, GOSAT records often suffer from missing data values mainly due to unfavorable meteorological condition in specific time periods of data acquisition. The aim of this research was to identify optimal spatial interpolation techniques to ensure the continuity of $CO_2$ from samples taken in the North East Asia. The accuracy among ordinary kriging (OK), universal kriging (UK) and simple kriging (SK) was compared based on the combined consideration of $R^2$ values, Root Mean Square Error (RMSE), Mean Error (ME) for variogram models. Cross validation for 1312 random sampling points indicate that the (UK) kriging is the best geostatistical method for spatial predictions of $CO_2$ in the East Asia region. The results from this study can be useful for selecting optimal kriging algorithm to produce $CO_2$ map of various landscapes. Also, data users may benefit from a statistical approach that would allow them to better understand the uncertainty and limitations of the GOSAT sample data.

Analysis of the Distribution Pattern of Seawater Intrusion in Coastal Area using the Geostatistics and GIS (지구통계기법과 GIS를 이용한 연안지역 해수침투 분포 파악)

  • 최선영;고와라;윤왕중;황세호;강문경
    • Spatial Information Research
    • /
    • v.11 no.3
    • /
    • pp.251-260
    • /
    • 2003
  • Distribution pattern of seawater intrusion was analyzed from the spatial distribution map of chloride using the geostatistics and CIS analyses. The chloride distribution map made by kriging(ordinary kriging and co-kriging) after exploratory spatial data analysis. Kriging provides an advanced methodology which facilitates quantification of spatial features and enables spatial interpolation. TDS, Na$^{+}$, Br$^{[-10]}$ were selected as second parameters of co-kriging which is higher value of correlation coefficients between chloride and others groundwater properties. Chloride concentration is highest in yeminchon and coastal area. And result in co-kriging was accurate than ordinary kriging.

  • PDF

Rapid Estimation of the Aerodynamic Coefficients of a Missile via Co-Kriging (코크리깅을 활용한 신속한 유도무기 공력계수 추정)

  • Kang, Shinseong;Lee, Kyunghoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.1
    • /
    • pp.13-21
    • /
    • 2020
  • Surrogate models have been used for the rapid estimation of six-DOF aerodynamic coefficients in the context of the design and control of a missile. For this end, we may generate highly accurate surrogate models with a multitude of aerodynamic data obtained from wind tunnel tests (WTTs); however, this approach is time-consuming and expensive. Thus, we aim to swiftly predict aerodynamic coefficients via co-Kriging using a few WTT data along with plenty of computational fluid dynamics (CFD) data. To demonstrate the excellence of co-Kriging models based on both WTT and CFD data, we first generated two surrogate models: co-Kriging models with CFD data and Kriging models without the CFD data. Afterwards, we carried out numerical validation and examined predictive trends to compare the two different surrogate models. As a result, we found that the co-Kriging models produced more accurate aerodynamic coefficients than the Kriging models thanks to the assistance of CFD data.

Spatial Distribution Modeling of Daily Rainfall Using Co-Kriging Method (Co-kriging 기법을 이용한 일강우량 공간분포 모델링)

  • Hwang Sye-Woon;Park Seung-Woo;Jang Min-Won;Cho Young-Kyoung
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.8 s.169
    • /
    • pp.669-676
    • /
    • 2006
  • Hydrological factors, especially the spatial distribution of interpretation on precipitation is often topic of interest in studying of water resource. The popular methods such as Thiessen method, inverse distance method, and isohyetal method are limited in calculating the spatial continuity and geographical characteristics. This study was intended to overcome those limitations with improved method that will yield higher accuracy. The monthly and yearly precipitation data were produced and compared with the observed daily precipitation to find correlation between them. They were then used as secondary variables in Co-kriging method, and the result was compared with the outcome of existing methods like inverse distance method and kriging method. The comparison of the data showed that the daily precipitation had high correlation with corresponding year's average monthly amounts of precipitation and the observed average monthly amounts of precipitation. Then the result from the application of these data for a Co-kriging method confirmed increased accuracy in the modeling of spatial distribution of precipitation, thus indirectly reducing inconsistency of the spatial distribution of hydrological factors other than precipitation.

Spatial Estimation of Point Observed Environmental Variables: A Case Study for Producing Rainfall Acidity Map (점관측 환경 인자의 공간 추정 - 남한 지역의 강우 산도 분포도 작성)

  • 이규성
    • Korean Journal of Remote Sensing
    • /
    • v.11 no.3
    • /
    • pp.33-47
    • /
    • 1995
  • The representation of point-observed environmental variables in Geographic Information Systems(GIS) has often been inadequate to meet the need of regional-scale ecological and environmental applications. To create a map of continuous surface that would represent more reliable spatial variations for these applications, I present three spatial estimation methods. Using a secondary variable of the proximity to coast line together with rainfall acidity data collected at the 63 acid rain monitoring stations in Korea, average rainfall acidity map was cteated using co-kriging. For comparison, two other commonly used interpolation methods (inverse distance weighting and kriging) were also applied to rainfall acidity data without reference to the secondary variable. These estimation methods were evaluated by both visual assessments of the output maps and the quantitative comparison of error measures that were obtained from cross validation. The co-kriging method produced a rainfall acidity map that showed noticeable improvement in repoducing the inherent spatial pattern as well as provided lower statistical error as compared to the methods using only the primary variable.

The Adjustment of Radar Precipitation Estimation Based on the Kriging Method (크리깅 방법을 기반으로 한 레이더 강우강도 오차 조정)

  • Kim, Kwang-Ho;Kim, Min-seong;Lee, Gyu-Won;Kang, Dong-Hwan;Kwon, Byung-Hyuk
    • Journal of the Korean earth science society
    • /
    • v.34 no.1
    • /
    • pp.13-27
    • /
    • 2013
  • Quantitative precipitation estimation (QPE) is one of the most important elements in meteorological and hydrological applications. In this study, we adjusted the QPE from an S-band weather radar based on co-kriging method using the geostatistical structure function of error distribution of radar rainrate. In order to estimate the accurate quantitative precipitation, the error of radar rainrate which is a primary variable of co-kriging was determined by the difference of rain rates from rain gauge and radar. Also, the gauge rainfield, a secondary variable of co-kriging is derived from the ordinary kriging based on raingauge network. The error distribution of radar rain rate was produced by co-kriging with the derived theoretical variogram determined by experimental variogram. The error of radar rain rate was then applied to the radar estimated precipitation field. Locally heavy rainfall case during 6-7 July 2009 is chosen to verify this study. Correlation between adjusted one-hour radar rainfall accumulation and rain gauge rainfall accumulation improved from 0.55 to 0.84 when compared to prior adjustment of radar error with the adjustment of root mean square error from 7.45 to 3.93 mm.

A Comparative Study on the Spatial Statistical Models for the Estimation of Population Distribution

  • Oh, Doo-Ri;Hwang, Chul Sue
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.3
    • /
    • pp.145-153
    • /
    • 2015
  • This study aims to accurately estimate population distribution more specifically than administrative unites using a RK (Regression-Kriging) model. The RK model is the areal interpolation technique that involves linear regression and the Kriging model. In order to estimate a population’s distribution using a sample region, four different models were used, namely; a regression model, RK model, OK (Ordinary Kriging) model and CK (Co-Kriging) model. The results were then compared with each other. Evaluation of the accuracy and validity of evaluation analysis results were the basis RMSE (Root Mean Square Error), MAE (Mean Absolute Error), G statistic and correlation coefficient (ρ). In the sample regions, every statistic value of the RK model showed better results than other models. The results of this comparative study will be useful to estimate a population distribution of the metropolitan areas with high population density

Development of Prediction Model for Renewable Energy Environmental Variables Based on Kriging Techniques (크리깅 기법 기반 재생에너지 환경변수 예측 모형 개발)

  • Choy, Youngdo;Baek, Jahyun;Jeon, Dong-Hoon;Park, Sang-Ho;Choi, Soonho;Kim, Yeojin;Hur, Jin
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.223-228
    • /
    • 2019
  • In order to integrate large amounts of variable generation resources such as wind and solar reliably into power grids, accurate renewable energy forecasting is necessary. Since renewable energy generation output is heavily influenced by environmental variables, accurate forecasting of power generation requires meteorological data at the point where the plant is located. Therefore, a spatial approach is required to predict the meteorological variables at the interesting points. In this paper, we propose the meteorological variable prediction model for enhancing renewable generation output forecasting model. The proposed model is implemented by three geostatistical techniques: Ordinary kriging, Universal kriging and Co-kriging.

A Geostatistical Approach for Improved Prediction of Traffic Volume in Urban Area (공간통계기법을 이용한 도시 교통량 예측의 정확성 향상)

  • Kim, Ho-Yong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.4
    • /
    • pp.138-147
    • /
    • 2010
  • As inaccurate traffic volume prediction may result in inadequate transportation planning and design, traffic volume prediction based on traffic volume data is very important in spatial decision making processes such as transportation planning and operation. In order to improve the accuracy of traffic volume prediction, recent studies are using the geostatistical approach called kriging and according to their reports, the method shows high predictability compared to conventional methods. Thus, this study estimated traffic volume data for St. Louis in the State of Missouri, USA using the kriging method, and tested its accuracy by comparing the estimates with actual measurements. In addition, we suggested a new method for enhancing the accuracy of prediction by the kriging method. In the new method, we estimated traffic volume data: first, by applying anisotropy, which is a characteristic of traffic volume data appearing in determining variogram factors; and second, by performing co-kriging analysis using interstate highway, which is in a high spatial correlation with traffic volume data, as a secondary variable. According to the results of the analysis, the analysis applying anisotropy showed higher accuracy than the kriging method, and co-kriging performed on the application of anisotropy produced the most accurate estimates.

Synthesis of Radar Measurements and Ground Measurements using the Successive Correction Method(SCM) (연속수정법을 이용한 레이더 자료와 지상 강우자료의 합성)

  • Kim, Kyoung-Jun;Choi, Jeong-Ho;Yoo, Chul-Sang
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.7
    • /
    • pp.681-692
    • /
    • 2008
  • This study investigated the application of the successive correction method(SCM), a simple data assimilation method, for synthesizing the radar and rain gauge data. First, the number of iteration and influence radius for the SCM application were decided based on their sensitivity analysis. Also, for the evaluation of synthetic rainfall, the distributed rainfall field using the dense rainfall gauge network was assumed to be the true one. The synthetic rainfall field based on the SCM was also compared quantitatively with the one based on the co-Kriging frequently used nowadays. As the results, the SCM, a simple and economical data assimilation method, was found to secure the accuracy and statistical characteristics of the co-Kriging application.