• 제목/요약/키워드: Co-intercalation

검색결과 56건 처리시간 0.021초

폴리(비닐 알코올) 나노복합체 필름(II) : 열적-기계적 성질 및 모폴로지 (Poly(vinyl alcohol) Nanocomposite Films (II): Thermo-mechanical Properties and Morphology)

  • 함신균;정민혜;장진해
    • 폴리머
    • /
    • 제30권6호
    • /
    • pp.545-549
    • /
    • 2006
  • 폴리(비닐 알코올) (PVA)과 폴리아크릴산-말레산-공중합체(PAM)의 블렌드를 수용액 상태로 얻은 후 점토인 사포나이트(SPT)를 분간시켜 필름 형태인 PVA/PAM/SPT의 나노복합재료를 합성하였다. 용액 삽입법을 이용하여 점토 함량을 0-9 wt%의 다양한 농도로 변화시켜 얻은 나노복합재료에 대해 분산도, 모폴로지 및 열적-기계적 성질 등을 각각 조사하였다. 점토 함량이 3 wt%일 때 점토 입자는 PVA/PAM 블렌드에 잘 분산되었으며, 점토함량이 7 wt%보다 많을 경우에는 고분자 모체에 일부 뭉친 구조가 관찰되었다. 나노복합재료의 열적 안정성은 점토함량이 9 wt%로 증가할 때까지 꾸준히 증가하였다. 인장 강도와 초기인장 탄성률은 점토 함량이 7 wt%일 때 최고값을 나타내었으나 그 이상의 점토 농도에서는 오히려 감소하였다. 본 연구 결과로부터 소량의 점토 첨가는 PVA/PAM 나노복합재료 필름의 열적, 기계적 성질을 증가시키는데 도움이 된다는 것을 알았다.

Synthesis of Silicon-Carbon by Polyaniline Coating and Electrochemical Properties of the Si-C|Li Cell

  • Doh, Chil-Hoon;Kim, Seong Il;Jeong, Ki-Young;Jin, Bong-Soo;An, Kay Hyeok;Min, Byung Chul;Moon, Seong-In;Yun, Mun-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권8호
    • /
    • pp.1175-1180
    • /
    • 2006
  • Si-C composites were prepared by the carbonization of polyaniline (PAn) coated on silicone powder. The physical and electrochemical properties of the Si-C composites were characterized by particle-size analysis, X-ray diffraction, scanning electron microscopy, and battery electrochemical tests. The average particle size of Si was increased by the coating of Pan but somewhat reduced by the carbonization to give silicone-carbon composites. The co-existence of crystalline silicone and amorphous-like carbon was confirmed by XRD analyses. SEM photos showed that the silicone particles were well covered with carbonaceous materials, depending on the PAn content. Si-C$\mid$Li cells were fabricated using the Si-C composites and tested using galvanostatic charge-discharge. Si-C$\mid$Li cells gave better electrochemical properties than Si|Li cells. Si-C$\mid$Li cells using Si-C from HCl-undoped precursor PAn showed better electrochemical properties than precursor PAn doped in HCl. The addition of an electrolyte containing 4-fluoroethylene carbonate (FEC) increased the initial discharge capacity. Also, another electrochemical test, the galvanostatic charge-discharge test with GISOC (gradual increasing of the state of charge) was carried out. Si-C(Si:PAn = 50:50 wt. ratio)|Li cell showed 414 mAh/g of reversible specific capacity, 75.7% of IIE (initial intercalation efficiency), 35.4 mAh/g of IICs (surface irreversible specific capacity).

Synthesis and Characterization of Hydrotalcite/Graphene Oxide Containing Benzoate for Corrosion Protection of Carbon Steel

  • Nguyen, Thuy Duong;Tran, Boi An;Vu, Ke Oanh;Nguyen, Anh Son;Trinh, Anh Truc;Pham, Gia Vu;To, Thi Xuan Hang;Phan, Thanh Thao
    • Corrosion Science and Technology
    • /
    • 제19권2호
    • /
    • pp.82-88
    • /
    • 2020
  • This work examined the corrosion protection performance of benzoate loaded hydrotalcite/graphene oxide (HT/GO-BZ) for carbon steel. HT/GO-BZ was fabricated by the co-precipitation method and characterized by infrared spectroscopy, X-ray diffraction, and scanning electronic microscopy. The corrosion inhibition action of HT/GO-BZ on carbon steel in 0.1 M NaCl solution was evaluated by electrochemical measurements. The benzoate content in HT/GO-BZ was determined by UV-Vis spectroscopy. Subsequently, the effect of HT/GO-BZ on the corrosion resistance of the water-based epoxy coating was investigated by the salt spray test. The obtained results demonstrated the intercalation of benzoate and GO in the hydrotalcite structure. The benzoate content in HT/GO-BZ was about 16%. The polarization curves of the carbon steel electrode revealed anodic corrosion inhibition activity of HT/GO-BZ and the inhibition efficiency was about 95.2% at a concentration of 3g/L. The GO present in HT/GO-BZ enhanced the inhibition effect of HT-BZ. The presence of HT/GO-BZ improved the corrosion resistance of the waterborne epoxy coating.

Spectroscopic Studies on the High-$T_c$ Superconducting $La_2CuO_{4-δ}$ Prepared by Electrochemical Oxidation

  • 박정철;Alain Wattiaux;Jean-Claude Grenier;김동훈;최진호
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권9호
    • /
    • pp.916-922
    • /
    • 1997
  • A superconducting phase La2CuO4+δ (Tc=44 K) has been prepared by electrochemical oxidation which allows the oxygen to intercalat into the La2O2 layers. According to the Cu K-edge X-ray absorption near edge structure spectroscopic analysis, the oxidized phase shows an overall spectra shift of about 0.5 eV to a higher energy region compared to the as sintered one with the occurrence of an additional peak corresponding to the transition to the |1s13dn+1L-14pσ1 > final state, indicating the oxidation of CuO2 layer. From the X-ray photoelectron spectroscopic studies, it is found that the binding energy of La 3d5/2 is significantly shifted from 834.3 eV (as sintered La2CuO4) to 833.6 eV (as electrochemically oxidized La2CuO4+δ), implying that the covalency of the (La-O) bond is decreased due to the oxygen intercalation. The O 1s spectra do not provide an evidence of the superoxide or peroxide, but the oxide (O2-) with the contaminated carbonate (CO32-) based on the peaks at 529 eV and 532 eV, respectively, which is clearly confirmed by the Auger spectroscopic analysis. Oxygen contents determined by iodometric titration (δ=0.07) and thermogravimetry (δ=0.09) show good coincidence each other, also giving an evidence for the "O2-" nature of excess oxygen. From the above results, it is concluded that "O2-" appeared as O 1s peak at 528.6 eV is responsible for superconductivity of La2CuO4+δ.

리튬이차전지 음극재용 나노입자 Li4Ti5O12의 전기화학적 연구 (Electrochemical Study of Nanoparticle Li4Ti5O12 as Negative Electrode Material for Lithium Secondary Battery)

  • 오미현;김한주;김영재;손원근;임기조;박수길
    • 전기화학회지
    • /
    • 제9권1호
    • /
    • pp.1-5
    • /
    • 2006
  • 리튬이온전지용 음극 활물질로 스피넬 구조의 리튬 티탄산화물$(Li_4Ti_5O_{12})$이 졸겔법과 HEBM법으로 제조되었다. 제조된 $Li_4Ti_5O_{12}$의 입자크기 및 결정구조를 확인하기 위하여 X-선 회절분석(XRD), 주사전자현미경(SEM) 및 평균입자분석(PSA)을 수행한 결과 100nm의 균일한 크기의 입자를 확인하였다. 작업전극으로 $Li_4Ti_5O_{12}$를 사용하고 기준전극과 상대전극으로 lithium 호일을 사용하여 전기화학적인 삼상전극 셀을 구성하여 전기화학적인 특성 평가를 한 결과 $1.0\sim2.5V$의 전압 범위에서 고율 충 방전 성능과 0.2C에서 173mAh/g의 용량 특성을 나타내었다. $Li_4Ti_5O_{12}$은 리튬의 삽입과 탈리가 일어나는 동안 구조적인 안정성을 보여주고 있다.

황백(黃柏)의 berberine이 DNA의 기능조절에 미치는 영향에 관한 형광이방성 연구 (Fluorescence Anisotropy Study on the Effect of Phellodendri Cortex's Berberine on Regulation of the Function of DNA)

  • 이성경;한효상;허성호
    • 대한본초학회지
    • /
    • 제33권5호
    • /
    • pp.105-110
    • /
    • 2018
  • Objectives : We tried to observe the fluorescence anisotropy and intensity of ethidium ion in the intercalating binding interaction between DNA and ethidium ions in the presence of berberine, and then tried to explain the effect of berberine on the intercalating interaction of ethidium ion with DNA. Methods : DNA(calf thymus DNA), berberine and ethidium bromide(EtBr) were purchased from Sigma-Aldrich Co. Proper amount of each compound was dissolved in 20 mM sodium phosphate buffer(pH 7.0) containing 100 mM of NaCl to prepare stock solutions. Collections of the fluorescence anisotropy and intensity data were performed on JASCO FP-8300 spectrofluorometer equipped with a polarizer and a Peltier temperature controller. The excitation of ethidium ion was done at 550 nm and the emission data were collected at 600 nm. For Stern-Volmer plot, the fluorescence data were collected at $18^{\circ}C$ and $30^{\circ}C$. Results : According to the results of this research, the weak competitive binding pattern between ethidium ion and berberine appeared in binding with DNA at low ratio of DNA to ethidium ion. But at high ratio of DNA to ethidium ion, this weak competition disappeared. Instead, berberine might bind to DNA by intercalating way. In other words, berberine could de-intercalate ethidium ion from DNA at low concentration of DNA relative to ethidium ion, but could not at high concentration of DNA relative to ethidium ion. In addition, the mechanism of fluorescence quenching of ethidium ion could also proceed differently, depending on the ratio of the amount of DNA to that of ethidium ion. Conclusions : The effect of berberine on the DNA-ethidium ion intercalating interaction could work differently, depending on the relative ratio of the amount of DNA to that of ethidium ion. This study also showed that fluorescence anisotropy analysis is very useful method to obtain detailed information for investigation of the complex binding interactions. In order to fully understand the mechanism of action of the pharmacological effect by berberine, studies on the effect of berberine on the action of proteins such as various enzymes closely related to berberine-induced medicinal effects should be continued.