• Title/Summary/Keyword: Co-immobilization

Search Result 137, Processing Time 0.027 seconds

Immobilization of $\beta-galactosidase$ with High Transgalactosylation Activity from Bacillus sp. A4442 Mutant (변이주 Bacillus sp. A4442가 생산하는 갈락토스 전이활성이 높은 $\beta-galactosidase$의 고정화)

  • Kim, Min-Hong;Jung, Jin;In, Man-Jin
    • Applied Biological Chemistry
    • /
    • v.39 no.5
    • /
    • pp.333-337
    • /
    • 1996
  • For continuous production of galactooligosaccharides(GOS), $\beta-galactosidase$ with h1gh transgalactosylation activity from Bacillus sp. A 4442 was Immobilized onto $Diaion^{TM}$ HPA 75(styrene-divinylbenzene resin). The parameters influencing enzyme immobilization were scrutinized in order to maximize immobilization yield while minimizing enzyme inactivation. The optimum conditions turned out to be: Tris buffer concentration 30 mM, pH 8.0, contact time at room temperature 3 hr, and enzyme loading 25 mg protein/g resin. Both the thermal stability and the operational stability of immobilized enzyme were markedly enchanced by the treatment with 0.5% glutaraldehyde as a cross-linker. Under the experimental conditions established, the yield of ${\beta}-galactosidase$ immobilization was 40% or more and the activity of the immobilized enzyme ca. 200 U/g resin. When a packed-bed reactor was employed to continuously convert lactose to GOS, the specific production, which refers to as the amount of commercially valuable GOS produced by a unit amount of immobilized ${\beta}-galactosidase$, was found to be ca. 300 g GOS/g carrier.

  • PDF

Immobilization of GH78 α-L-Rhamnosidase from Thermotoga petrophilea with High-Temperature-Resistant Magnetic Particles Fe3O4-SiO2-NH2-Cellu-ZIF8 and Its Application in the Production of Prunin Form Naringin

  • Xu, Jin;Shi, Xuejia;Zhang, Xiaomeng;Wang, Zhenzhong;Xiao, Wei;Zhao, Linguo
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.419-428
    • /
    • 2021
  • To efficiently recycle GH78 thermostable rhamnosidase (TpeRha) and easily separate it from the reaction mixture and furtherly improve the enzyme properties, the magnetic particle Fe3O4-SiO2-NH2-Cellu-ZIF8 (FSNcZ8) was prepared by modifying Fe3O4-NH2 with tetraethyl silicate (TEOS), microcrystalline cellulose and zinc nitrate hexahydrate. FSNcZ8 displayed better magnetic stability and higher-temperature stability than unmodified Fe3O4-NH2 (FN), and it was used to adsorb and immobilize TpeRha from Thermotoga petrophilea 13995. As for properties, FSNcZ8-TpeRha showed optimal reaction temperature and pH of 90℃ and 5.0, while its highest activity approached 714 U/g. In addition, FSNcZ8-TpeRha had better higher-temperature stability than FN. After incubation at 80℃ for 3 h, the residual enzyme activities of FSNcZ8-TpeRha, FN-TpeRha and free enzyme were 93.5%, 63.32%, and 62.77%, respectively. The organic solvent tolerance and the monosaccharides tolerance of FSNcZ8-TpeRha, compared with free TpeRha, were greatly improved. Using naringin (1 mmol/l) as the substrate, the optimal conversion conditions were as follows: FSNcZ8-TpeRha concentration was 6 U/ml; induction temperature was 80℃; the pH was 5.5; induction time was 30 min, and the yield of products was the same as free enzyme. After repeating the reaction 10 times, the conversion of naringin remained above 80%, showing great improvement of the catalytic efficiency and repeated utilization of the immobilized α-L-rhamnosidase.

Phosphate Associated Cadmium Immobilization Mechanism Depending on the Original Concentration of Cd in Soil

  • Lee, Hyun Ho;Hong, Chang Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.429-433
    • /
    • 2016
  • Adsorption and precipitation of cadmium (Cd) could be dependent on rate of P addition and Cd level in soil. Therefore, the objective of this study was to examine how addition rate of P affect mechanisms of Cd immobilization such as adsorption and precipitation in different levels of Cd in soil. Arable soils were spiked with inorganic Cd ($CdCl_2$) to give a total Cd concentration of 10, 100, and $1,000mg\;Cd\;kg^{-1}$. Monopotassium phosphate ($KH_2PO_4$, MPP) was selected as phosphate material and mixed with the pretreated arable soil at the rates of 0, 800, 1,600 and $3,200mg\;P\;kg^{-1}$. The mixture soils were incubated at $25^{\circ}C$ for 8 weeks in dark condition. Soil pH decreased with increasing MPP addition rate in all levels of Cd but negative charge of soil increased, thereby reducing 1 M $NH_4OAc$ extractable Cd. Soil solutions were undersaturated with respect to $CdCO_3$ and $Cd_3(PO_4)_2$ with all P addition rate in soil with low Cd level (${\leq}100mg\;Cd\;kg^{-1}$) but supersaturated in soil with high Cd level ($1,000mg\;Cd\;kg^{-1}$). From the above results, Cd solubility was controlled by precipitation of Cd minerals such as $CdCO_3$ and $Cd_3(PO_4)_2$ in soil with high Cd level but by Cd adsorption induced by increase in negative charge of soil with low level of Cd.

Liming Effect on Cadmium Immobilization and Phytoavailability in Paddy Soil Affected by Mining Activity (중금속 오염 논토양에서 카드뮴의 부동화와 식물이용성에 대한 석회 시용 효과)

  • Hong, Chang Oh;Kim, Yong Gyun;Lee, Sang Mong;Park, Hyean Cheal;Kim, Keun Ki;Son, Hong Joo;Cho, Jae Hwan;Kim, Pil Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • BACKGROUND: Many studies associated with cadmium (Cd) immobilization using lime fertilizer have been conducted for several decades. However, these studies did not suggest exact mechanism of Cd immobilization using lime fertilizer and evaluated effect of lime fertilizer on Cd phytoavailability in rice paddy soil under field condition. METHODS AND RESULTS: This study was conducted to determine exact mechanism of Cd immobilization using lime fertilizer and evaluate liming effect on Cd uptake of rice in contaminated paddy soil. $Ca(OH)_2$ was mixed with Cd contaminated arable soil at rates corresponding to 0, 1,000, 2,000, 4,000, and 8,000 mg/kg. The limed soil was moistened to paddy soil condition, and incubated at $25^{\circ}C$ for 4 weeks. $NH_4OAc$ extractable Cd concentration in soil decreased significantly with increasing $Ca(OH)_2$ rate, since $Ca(OH)_2$ markedly increased net negative charge of soil by pH increase, and decreased bioavailable Cd fractions (F1; exchangeable + acidic and reducible Cd fraction). Calculated solubility diagram indicated that Cd solubility was controlled by soil-Cd. $NH_4OAc$ extractable Cd and F1 concentration were negatively related to soil pH and negative charge. $Ca(OH)_2$ was applied at rates 0, 2, 4, and 8 Mg/ha and then cultivated rice in the paddy soil under field condition. Cadmium concentrations in grain, straw, and root of rice plant decreased significantly with increasing application rate of $Ca(OH)_2$. CONCLUSION(S): Alleviation of Cd phytoavailability with $Ca(OH)_2$ can be attributed primarily to Cd immobilization due to the increase in soil pH and negative charge rather than precipitation of $Cd(OH)_2$ or $CdCO_3$, and therefore, $Ca(OH)_2$ is effective for reducing Cd phytoavailability of rice in paddy soil.

2,4-Dichlorophenol Enzymatic Removal and Its Kinetic Study Using Horseradish Peroxidase Crosslinked to Nano Spray-Dried Poly(Lactic-Co-Glycolic Acid) Fine Particles

  • Dahili, Laura Amina;Nagy, Endre;Feczko, Tivadar
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.4
    • /
    • pp.768-774
    • /
    • 2017
  • Horseradish peroxidase (HRP) catalyzes the oxidation of aromatic compounds by hydrogen peroxide via insoluble polymer formation, which can be precipitated from the wastewater. For HRP immobilization, poly(lactic-co-glycolic acid) (PLGA) fine carrier supports were produced by using the Nano Spray Dryer B-90. Immobilized HRP was used to remove the persistent 2,4-dichlorophenol from model wastewater. Both extracted (9-16 U/g) and purified HRP (11-25 U/g) retained their activity to a high extent after crosslinking to the PLGA particles. The immobilized enzyme activity was substantially higher in both the acidic and the alkaline pH regions compared with the free enzyme. Optimally, 98% of the 2,4-dichlorophenol could be eliminated using immobilized HRP due to catalytic removal and partly to adsorption on the carrier supports. Immobilized enzyme kinetics for 2,4-dichlorophenol elimination was studied for the first time, and it could be concluded that competitive product inhibition took place.

Synthesis and Characteristics of Photo-crosslinkable Hydrogel for Microbial Immobilization (미생물 고정화를 위한 광경화성 하이드로겔의 합성과 특성)

  • Kim, Cho Woong;Lee, Jung Bock;Kim, Du Hyun;Hwang, Jung Min;Cho, Chong Su;Choi, Young Hoon;Chung, Dae-Won
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.852-856
    • /
    • 1999
  • The objective of this study was to prepare hydrogel beads which were useful microbial immobilization to remove nitrogen and phosphorous in the industrial wastewater. Two different polyols(PEG, PTMG) terminated with photo-crosslinkable methacrylate groups were synthesized. Structures of the prepolymers and the UV cured hydrogels were characterized by using $^1H$-NMR and FT-IR spectroscopy. Water content, mechanical strength and pore sizes of the hydrogels having different MW of polyols and different ratios of PEG/PTMG were investigated. Hydrogels prepared from PEG(MW1000) only or the mixture of PEG(MW1000) and PTMG(MW2900) with 7:3 by weight were considered as potential candidates for the matrix for the immobilization of microorganism.

  • PDF

Synthesis and Characterization of Magnetic Nanoparticles and Its Application in Lipase Immobilization

  • Xu, Jiakun;Ju, Caixia;Sheng, Jun;Wang, Fang;Zhang, Quan;Sun, Guolong;Sun, Mi
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2408-2412
    • /
    • 2013
  • We demonstrate herein the synthesis and modification of magnetic nanoparticles and its use in the immobilization of the lipase. Magnetic $Fe_3O_4$ nanoparticles (MNPs) were prepared by simple co-precipitation method in aqueous medium and then subsequently modified with tetraethyl orthosilicate (TEOS) and 3-aminopropyl triethylenesilane (APTES). Silanization magnetic nanoparticles (SMNP) and amino magnetic nanomicrosphere (AMNP) were synthesized successfully. The morphology, structure, magnetic property and chemical composition of the synthetic MNP and its derivatives were characterized using transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) analysis, X-ray diffraction, superconducting quantum interference device (SQUID) and thermogravimetric analyses (TGA). All of these three nanoparticles exhibited good crystallization performance, apparent superparamagnetism, and the saturation magnetization of MNP, SMNP, AMNP were 47.9 emu/g, 33.0 emu/g and 19.5 emu/g, respectively. The amino content was 5.66%. The AMNP was used to immobilize lipase, and the maximum adsorption capacity of the protein was 26.3 mg/g. The maximum maintained activity (88 percent) was achieved while the amount of immobilized lipase was 23.7 mg $g^{-1}$. Immobilization of enzyme on the magnetic nanoparticles can facilitate the isolation of reaction products from reaction mixture and thus lowers the cost of enzyme application.

Stable Degradation of Benzoate by Klebsiella oxytoca C302 Immobilized in Alginate and Polyurethane

  • Kim, Jun-Ho;Jeong, Won-Hwa;T.B. Karegoudar;Kim, Chi-Kyung
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.6
    • /
    • pp.347-351
    • /
    • 2002
  • Benzoate produced from the degradative pathways of various aromatic chemicals is generally recognized as a pollutant compound. However, various bacterial strains isolated as benzoate degraders have exhibited certain limits to their functions, including a loss of viability and degradability when cultivated in a broth medium for a longer time. Accordingly, immobilization techniques have been utilized to overcome such problems, and the current study examined the use of alginate and polyurethane for immobilizing Klebsiella oxytoca C302 to extend its viability and degradability of benzoate. The organism was well encapsulated by both matrices and the immobilized cells showed a high stability as regards their viability and degradability of 2 mM benzoate in a MM2 broth medium during cultivation for longer than 60 h in a semicontinuous batch system.

Fabrication of enzymatic biosensor based on the poly(3-thiophenecarboxylic acid-co-thiophene) polymer as electron-transfer materials

  • Kim, Soo-Yeoun;Jo, Hyeon-Jin;Choi, Seong-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.269-278
    • /
    • 2019
  • We fabricated glucose oxidase (GOx)-modified biosensor for detection of glucose by physical immobilization of GOx after electrochemical polymerization of the conductive mixture monomers of the 3-thiophenecarboxylic acid (TCA) and thiophene (Th) onto ITO electrode in this study. We confirmed the successfully fabrication of GOx-modified biosensor via FT-IR spectroscopy, SEM, contact angle, and cyclic voltammetry. The fabricated biosensor has the detection limit of $0.1{\mu}M$, the linearity of 0.001-27 mM, and sensitivity of $38.75mAM^{-1}cm^{-2}$, respectively. The fabricated biosensor exhibits high interference effects to dopamine, ascorbic acid, and L-cysteine, respectively. From these results, the fabricated GOx-modified biosensor with long linearity and high sensitivity could be used as glucose sensor in human blood sample.

Potentimetric Biosensor for Detection of L-Malate and D-Isocitrate Employing ${CO_{3}}^2-$ -Selective Electrode and Enzyme Immobilization in Flow Injection Analysis

  • Kwun, In-Sook;Kim, Meera
    • Preventive Nutrition and Food Science
    • /
    • v.3 no.1
    • /
    • pp.36-42
    • /
    • 1998
  • Ion-selective eleltrodes(ISEs) are simple electrodechemical devices for the direct measurement of ions in the samples. A novel potentiometric biosensor for the determination of L-Malate or D-isocitrate has been developed by using CO2-3 -ISE-FIA system was composed of a pump, an injector, a malic enzyme or isocitric dehydrogenase enzyme reactor, a CO2-3 -ISE, a pH/mV meter, and an integrater. The various factors, such as buffer capacity types of plstericizer and polymer, were optimized for the CO2-3 selectivity. In this novel CO2-3 --ISE-FIA system, the potential difference due to the amount of CO2-3 produced from each enzyme reaction was proportional to the amount of L-malate or D-isocitrate.

  • PDF