• Title/Summary/Keyword: Co-flow

Search Result 3,409, Processing Time 0.031 seconds

Angiogenic Responce to Transmyocardial Mechanical Reveascularization(TMMR) with Polymer Myocardial Stent (고분자 중합체 심근 스템트를 이용한 기계적 경심근 혈류재건술의 혈관생성 반응)

  • Choi, Ho;Lee, Cheol-Joo;Moon, Kwang-Deok;Kim, Young-Jin;Kang, Joon-Kyu;Hong, Jun-Wha;Jee, Kyung-Soo;Han, Man-Jung;Cho, Sang-Ho
    • Journal of Chest Surgery
    • /
    • v.33 no.6
    • /
    • pp.494-501
    • /
    • 2000
  • Background: Transmyocardial laser revascularization(TMLR) for revascularizing ischemic myocardium in patients was originally based on the assumption that laser channels remain their patency much longer. But recent studies show that laser channels did not remain open and that TMLR could achieve treatment benefits without long-term channel patency. The angiongencesis is currently thought to be induced by non-specific inflammatory response to mechanical tissue injury. This study is to evaluate hypothesis that various transmyocaridal mechanical revascularization(TMMR) may induce the angiogenic responses similar to that seen with TMLR, and transmyocaridal polymer stent revascularization(TMSR), the polymer stent in the myocardial tissue is hydrolyzed in 2 weeks, may enhance the non-specific inflammatory reaction resulting angiogenesis. Furthermore, polymer myocaridal stent channels remain long-term patency. Material and Method: Eight domestic pigs underwent ligation of the proximal circumflex artery, and 2 weeks later they were randomized to undergo transmycardial acupunctural revascularization (TMPR, Group I) of the left lateral wall with 18-G needle(n=2), to undergo transmyocardial (TMDR, Group II) with industrial 2mm steel drill(n=2), to undergo transmyocardial polymer stent revascularization (TMSR, Group III) after drilling the infarcted myocardium(n=2), the stent is poly(lactic acid-co-glycolic acid), which is self-degradated in the myocardium, and to a control group the ischemic zone was unterated(n=2). All the pigs were sacrificed after 4 weeks TMMR. Sections from the ischemic zone were submitted for vascular endothelial growth factor (VEGF) ELISA and histology. Result: There were makedly increase in the VEGF immunoassay in the ischemic zone of the TMMR group compared to the ischemic zone of the control group(control: each 30.85 and 43.15pg/mg protein, TMPR: each 44.14 and 68.61 pg/mg protein, TMDR: each 65.92 and 78.65 pg/mg protein, TMSR: each 177.39 and 168.87 pg/mg protein). TMSR channels caused greatest VEGF expression than channels made by other group and the polymer stent channels remained vacuole after 4 weeks. Conclusion: Transmyocardial polymer stent revascularization promoted the most angiogenci response by the VEGF immunoassay, although our study did not show the statistical significancy. The channels remained but the flow patency was not verified. Transmyocardial polymer stent revascularization (TMSR) is desirable in future experimental trials and in view of the significant cost implications comparable to that of laser.

  • PDF

Changes in Antioxidant and Nitrite Scavenging Activities of Angelica keiskei and Brassica loeracea var. acephala Vegetable Juices Treated with UV Irradiation during Storage (UV 조사한 신립초 및 케일 녹즙의 항산화 활성 및 아질산염 소거작용의 변화)

  • Choi, Goo-Hee;Kwon, Sang-Chul;Lee, Kyung-Haeng
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.8
    • /
    • pp.1187-1193
    • /
    • 2010
  • To elongate the shelf-life of Angelica keiskei and Brassica loeracea var. acephala vegetable juices, UV irradiation was used and the changes of antioxidant activity and nitrite scavenging ability were investigated. The content of polyphenols of vegetable juices were slightly reduced by UV treatment and/or storage period. The DPPH radical-scavenging activities of the vegetable juices treated by UV were higher than that of control but were not changed during storage. However, $ABTS{\cdot}^+$ reducing activities of the vegetable juices were reduced by UV treatment. The $ABTS{\cdot}^+$ reducing activity of Brassica loeracea var. acephala juice was lower when the flow rate was slower. The ferrous ion chelating effects of Angelica keiskei vegetable juices were reduced by UV treatment. In contrast, the ferrous ion chelating effects of Brassica loeracea var. acephala vegetable juices were not different from those of right after manufacturing. The ferrous ion chelating effects on both vegetable juices increased during storage periods. The inhibitory activity of lipid oxidation was decreased slightly by UV treatment on vegetable juices. The nitrite scavenging ability of Angelica keiskei and Brassica loeracea var. acephala vegetable juices treated by UV irradiation was not different from that of control. The nitrate scavenging abilities of vegetable juices in pH 1.2 were higher than those in pH 3.0 and 4.2.

Heat-Shock Protein 70 as a Tumor Antigen for in vitro Dendritic Cell Pulsing in Renal Cell Carcinoma Cases

  • Meng, Fan-Dong;Sui, Cheng-Guang;Tian, Xin;Li, Yan;Yang, Chun-Ming;Ma, Ping;Liu, Yun-Peng;Jiang, You-Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.20
    • /
    • pp.8947-8950
    • /
    • 2014
  • Immunological functions of heat shock proteins (HSPs) have long been recognized. In this study we aimed to efficiently purify HSP70 from renal cell carcinoma and test it as a tumor antigen for pulsing dendritic cells in vitro. HSP70 was purified from renal cell carcinoma specimens by serial column chromatography on Con A-sepharose, PD-10, ADP-agarose and DEAE-cellulose, and finally subjected to fast protein liquid chromatography (FPLC). Dendritic cells derived from the adherent fraction of peripheral blood mononuclear cells were cultured in the presence of IL-4 and GM-CSF and exposed to tumor HSP70. After 24 hours, dendritic cells were phenotypically characterized by flow cytometry. T cells obtained from the non-adherent fraction of peripheral blood mononuclear cells were then co-cultured with HSP70-pulsed dendritic cells and after 3 days T cell cytotoxicity towards primary cultured renal cell carcinoma cells was examined by Cell Counting Kit-8 assay. Dendritic cells pulsed in vitro with tumor-derived HSP70 expressed higher levels of CD83, CD80, CD86 and HLA-DR maturation markers than those pulsed with tumor cell lysate and comparable to that of dendritic cells pulsed with tumor cell lysate plus TNF-${\alpha}$. Concomitantly, cytotoxic T-lymphocytes induced by HSP70-pulsed dendritic cells presented the highest cytotoxic activity. There were no significant differences when using homologous or autologous HSP70 as the tumor antigen. HSP70 can be efficiently purified by chromatography and induces in vitro dendritic cell maturation in the absence of TNF-${\alpha}$. Conspecific HSP70 may effectively be used as a tumor antigen to pulse dendritic cells in vitro.

Establishment of Paclitaxel-resistant Breast Cancer Cell Line and Nude Mice Models, and Underlying Multidrug Resistance Mechanisms in Vitro and in Vivo

  • Chen, Si-Ying;Hu, Sa-Sa;Dong, Qian;Cai, Jiang-Xia;Zhang, Wei-Peng;Sun, Jin-Yao;Wang, Tao-Tao;Xie, Jiao;He, Hai-Rong;Xing, Jian-Feng;Lu, Jun;Dong, Ya-Lin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.6135-6140
    • /
    • 2013
  • Background: Breast cancer is a common malignant tumor which affects health of women and multidrug resistance (MDR) is one of the main factors leading to failure of chemotherapy. This study was conducted to establish paclitaxel-resistant breast cancer cell line and nude mice models to explore underlying mechanisms of MDR. Methods: The breast cancer drug-sensitive cell line MCF-7 (MCF-7/S) was exposed in stepwise escalating paclitaxel (TAX) to induce a resistant cell line MCF-7/TAX. Cell sensitivity to drugs and growth curves were measured by MTT assay. Changes of cell morphology and ultrastructure were examined by optical and electron microscopy. The cell cycle distribution was determined by flow cytometry. Furthermore, expression of proteins related to breast cancer occurrence and MDR was tested by immunocytochemistry. In Vivo, nude mice were injected with MCF-7/S and MCF-7/TAX cells and weights and tumor sizes were observed after paclitaxel treatment. In addition, proteins involved breast cancer and MDR were detected by immunohistochemistry. Results: Compared to MCF-7/S, MCF-7/TAX cells had a higher resistance to paclitaxel, cross-resistance and prolonged doubling time. Moreover, MCF-7/TAX showed obvious alterations of ultrastructure. Estrogen receptor (ER) expression was low in drug resistant cells and tumors while expression of human epidermal growth factor receptor 2 (HER2) and Ki-67 was up-regulated. P-glycoprotein (P-gp), lung resistance-related protein (LRP) and glutathione-S-transferase-${\pi}$ (GST-${\pi}$) involved in the MDR phenotype of resistant cells and tumors were all overexpressed. Conclusion: The underlying MDR mechanism of breast cancer may involve increased expression of P-gp, LRP and GST-${\pi}$.

Properties analysis of environment friendly calcareous deposit films electrodeposited at various temperature conditions in natural seawater (천연해수 중 온도 변화에 따라 전착한 환경친화적인 석회질 피막의 특성 분석)

  • Lee, Chan-Sik;Kang, Jun;Lee, Myeong-Hoon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.7
    • /
    • pp.779-785
    • /
    • 2015
  • Cathodic protection is recognized as the most cost-effective and technically appropriate corrosion prevention method for the submerged zone of offshore structures, ships, and deep-sea facilities. When cathodic protection is applied, the cathodic currents cause dissolved oxygen reduction, generating hydroxyl ions near the polarized surface that increase the interfacial pH and result in enhanced carbonate ion concentration and precipitation of an inorganic layer whose principal component is calcium carbonate. Depending on the potential, magnesium hydroxide can also precipitate. This mixed deposit is generally called "calcareous deposit." This layer functions as a barrier against the corrosive environment, leading to a decrease in current demand. Hence, the importance of calcareous deposits for the effective, efficient operation of marine cathodic protection systems is recognized by engineers and scientists concerned with cathodic protection in submerged marine environments. Calcareous deposit formation on a marine structure depends on the potential, current, pH, temperature, pressure, sea-water chemistry, flow, and time; deposit quality is significantly influenced by these factors. This study determines how calcareous deposits form in sea water, and assesses the interrelationship of formation conditions (such as the sea water temperature and surface condition of steel), deposited structure, and properties and the effectiveness of the cathodic protection.

A study of NOx performance for Cu-chabazite SCR catalysts by Sulfur poisoning and desulfation (Cu-Chabazite SCR Catalysts의 황 피독 및 탈황에 의한 NOx 저감 성능에 관한 연구)

  • Nam, Jeong-Gil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.855-861
    • /
    • 2013
  • Small-pore Cu-chabazite SCR catalysts with high NOx conversion at low temperatures are of interest for marine diesel engines with exhaust temperatures in the range of 150 to $300^{\circ}C$. Unfortunately, fuels for marine diesel engines can contain a high level of sulfur of up to 1.5% by volume, which corresponds to a $SO_2$ level of 500 ppm in the exhaust gases for an engine operating with an A/F ratio of 50:1. This high level of $SO_2$ in the exhaust may have detrimental effects on the NOx performance of the Cu-chabazite SCR catalysts. In the present study, a bench-flow reactor is used to investigate the effects of sulfur poisoning on the NOx performance of Cu-chabazite SCR catalysts. The SCR catalysts were exposed to simulated diesel exhaust gas stream consisted of 500 ppm $SO_2$, 5% $CO_2$, 14% $O_2$, 5% $H_2O$ with $N_2$ as the balance gas at 150, 200, 250 and $300^{\circ}C$ for 2 hours at a GHSV of 30,000 $h^{-1}$. After sulfur poisoning the low-temperature NOx performance of the SCR catalyst is evaluated over a temperature range of 150-$300^{\circ}C$ to determine the extent of the catalyst deactivation. Desulfation is also carried out at 600 and $700^{\circ}C$ for 30 minutes to determine whether it is possible to recover the NOx performance of the sulfur-poisoned SCR Catalysts.

Analysis of Geographic and Pairwise Distances among Chinese Cashmere Goat Populations

  • Liu, Jian-Bin;Wang, Fan;Lang, Xia;Zha, Xi;Sun, Xiao-Ping;Yue, Yao-Jing;Feng, Rui-Lin;Yang, Bo-Hui;Guo, Jian
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.3
    • /
    • pp.323-333
    • /
    • 2013
  • This study investigated the geographic and pairwise distances of nine Chinese local Cashmere goat populations through the analysis of 20 microsatellite DNA markers. Fluorescence PCR was used to identify the markers, which were selected based on their significance as identified by the Food and Agriculture Organization of the United Nations (FAO) and the International Society for Animal Genetics (ISAG). In total, 206 alleles were detected; the average allele number was 10.30; the polymorphism information content of loci ranged from 0.5213 to 0.7582; the number of effective alleles ranged from 4.0484 to 4.6178; the observed heterozygosity was from 0.5023 to 0.5602 for the practical sample; the expected heterozygosity ranged from 0.5783 to 0.6464; and Allelic richness ranged from 4.7551 to 8.0693. These results indicated that Chinese Cashmere goat populations exhibited rich genetic diversity. Further, the Wright's F-statistics of subpopulation within total (FST) was 0.1184; the genetic differentiation coefficient (GST) was 0.0940; and the average gene flow (Nm) was 2.0415. All pairwise FST values among the populations were highly significant (p<0.01 or p<0.001), suggesting that the populations studied should all be considered to be separate breeds. Finally, the clustering analysis divided the Chinese Cashmere goat populations into at least four clusters, with the Hexi and Yashan goat populations alone in one cluster. These results have provided useful, practical, and important information for the future of Chinese Cashmere goat breeding.

Evaluation of Cardiac Function Analysis System Using Magnetic Resonance Images

  • Tae, Ki-Sik;Suh, Tae-Suk;Choe, Bo-Young;Lee, Hyoung-Koo;Shinn, Kyung-Sub;Jung, Seung-Eun;Lee, Jae-Moon
    • Progress in Medical Physics
    • /
    • v.10 no.3
    • /
    • pp.159-168
    • /
    • 1999
  • Cardiac disease is one of the leading causes of death in Korea. In quantitative analysis of cardiac function and morphological information by three-dimensional reconstruction of magnetic resonance images, left ventricle provides an important role functionally and physiologically. However, existing procedures mostly rely on the extensive human interaction and are seldom evaluated on clinical applications. In this study, we developed a system which could perform automatic extraction of enpicardial and endocardial contour and analysis of cardiac function to evaluate reliability and stability of each system comparing with the result of ARGUS system offered 1.5T Siemens MRI system and manual method performed by clinicians. For various aspects, we investigated reliability of each system by compared with left ventricular contour, end-diastolic volume (EDV), end-systolic volume (ESV), stock volume (SV), ejection fraction (EF), cardiac output (CO) and wall thickness (WT). When comparing with manual method, extracted results of developed process using minimum error threshold (MET) method that automatically extracts contour from cardiac MR images and ARGUS system were demonstrated as successful rate 90% of the contour extraction. When calculating cardiac function parameters using MET and comparing with using correlation coefficients analysis method, the process extracts endocardial and epicardial contour using MET, values from automatic and ARGUS method agreed with manual values within :t 3% average error. It was successfully demonstrated that automatic method using threshold technique could provide high potential for assessing of each parameters with relatively high reliability compared with manual method. In this study, the method developed in this study could reduce processing time compared with ARGUS and manual method due to a simple threshold technique. This method is useful for diagnosis of cardiac disease, simulating physiological function and amount of blood flow of left ventricle. In addition, this method could be valuable in developing automatic systems in order to apply to other deformable image models.

  • PDF

Connection of Hydrologic and Hydraulic Models for Flood Forecasting in a Large Urban Watershed (대규모 도시유역의 홍수예보를 위한 수리.수문 모형의 연계)

  • Yoon, Seong-Sim;Choi, Chul-Kwan;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.9
    • /
    • pp.929-941
    • /
    • 2008
  • The objectives of this study are to propose a system for combined use of a hydrologic and a hydraulic model for urban flood forecast model and to evaluate the system on the $300km^2$ Jungrang urban watershed area, which is relatively large area as an urban watershed and consequently composed of very complex drainage pipes and streams with different land uses. In this study, SWMM for hydrologic model and HEC-RAS for hydraulic model are used and the study area is divided into 25 subbasins. The SWMM model is used for sewer drainage analysis within each subbasin, while HEC-RAS for unstready flow analysis in the channel streams. Also, this study develops a GUI system composed of mean areal precipitation input component, hydrologic runoff analysis component, stream channel routing component, and graphical representation of model output. The proposed system was calibrated for the model parameters and verified for the model applicability by using the observation data. The correlation coefficients between simulated and observed flows at the 2 important locations were ranged on 0.83-0.98, while the coefficients of model efficiency on 0.60-0.92 for the verification periods. This study also provided the possibilities of manhole overflows and channel bank inundation through the calculated water profile of longitudinal and channel sections, respectively. It can be concluded that the proposed system can be used as a surface runoff and channel routing models for urban flood forecast over the large watershed area.

Comparison of Molding Characteristics for Multi-cavity Molding in Conventional Injection Molding and Injection Compression Molding (다수 개 빼기 성형에서 일반사출성형과 사출압축성형의 성형특성 비교)

  • Lee, Dan Bi;Nam, Yun Hyo;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.144-149
    • /
    • 2014
  • Large residual stresses are remained in the conventional injection molded products because of the high cavity pressure in packing phase during injection molding process. Conventional injection molding (CIM) invokes distribution of cavity pressure and it has a limitation to obtain product with uniform physical property. Multi-cavity conventional injection molding contains quality deviation among the cavities since flow imbalance occurs during filling phase. Injection compression molding (ICM) is adopted to overcome these limitations of CIM. In this study, molding characteristics of CIM and ICM have been investigated using multi-cavity injection mold. Researches were performed by both experiment and computer simulation through observations of birefringence for transparent resins, polycarbonate and polystyrene in CIM and ICM. As a result, low and uniform birefringence and mold shrinkage were showed in the specimens by ICM that could give a uniform cavity pressure. Deviation of physical property among the specimens in multi-cavity mold shown in CIM was significantly reduced in the specimens by ICM. Through this study it was concluded that the ICM in multi-cavity molding was valid for molding products with uniform property in an individual cavity and also reduced property deviation among the cavities.