• Title/Summary/Keyword: Co-fire

Search Result 941, Processing Time 0.025 seconds

A Study on Clean Agents for Halon Replacement in the Portable Extinguisher with CO2 as an Expellant Gas (이산화탄소를 가압원으로 하는 할론대체 소화기용 청정소화약제에 대한 연구)

  • Jeong, Keesin
    • Fire Science and Engineering
    • /
    • v.33 no.3
    • /
    • pp.51-55
    • /
    • 2019
  • To prevent ozone depletion caused by CFCs, the replacement of Halon with clean agents has been developed in the fire protection field along with refrigerants, detergents, and foaming agents. The alternatives for Halon 1211 have been developed in the portable fire extinguisher area and HCFC-123 is used widely as a clean fire extinguishing agent. The type of expellant gas is important because their own vapor pressure is low. In this study, HCFC-123, HCFC-124, HFC-125, and Novec-1230 were selected as fire extinguishing agents and CO2, which is expected to improve the fire extinguishing ability, was chosen as the expellant gas. For each agent, experiments changing the agent and CO2 amount were carried out and HCFC-123 showed a good result, as expected. The extinguisher, HCFC-123 of 1.5 kg, showed the same ability to suppress a class A and B fire as the extinguisher, HCFC-123 of 2.5 kg, which is currently sold on the market. According to this result, the expellant gas has a subsidiary fire extinguish effect. This can reduce the amount of HCFC fire extinguishing agent, which is categorized in the phase-out alternatives, and is a more eco-friendly and economical fire extinguisher than the previous one. This study can also help solve the problems of CO2 fire extinguishers for class B and C fires, and can be used to extinguish electric and electron facilities fire, which contains large amounts of class A fire combustibles.

Fire Detection Using Multi-Channel Information and Gray Level Co-occurrence Matrix Image Features

  • Jun, Jae-Hyun;Kim, Min-Jun;Jang, Yong-Suk;Kim, Sung-Ho
    • Journal of Information Processing Systems
    • /
    • v.13 no.3
    • /
    • pp.590-598
    • /
    • 2017
  • Recently, there has been an increase in the number of hazardous events, such as fire accidents. Monitoring systems that rely on human resources depend on people; hence, the performance of the system can be degraded when human operators are fatigued or tensed. It is easy to use fire alarm boxes; however, these are frequently activated by external factors such as temperature and humidity. We propose an approach to fire detection using an image processing technique. In this paper, we propose a fire detection method using multichannel information and gray level co-occurrence matrix (GLCM) image features. Multi-channels consist of RGB, YCbCr, and HSV color spaces. The flame color and smoke texture information are used to detect the flames and smoke, respectively. The experimental results show that the proposed method performs better than the previous method in terms of accuracy of fire detection.

Applicability of CO2 Extinguishing System for Ships (질식사고 방지용 CO2 소화설비의 선박 적용성)

  • Ha, Yeon Chul;Seo, Jung Kwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.4
    • /
    • pp.294-300
    • /
    • 2017
  • The offshore installations and ships are the structures most likely to be exposed to hazards such as hydrocarbon fire and/or explosion. Developing proactive measures to prevent the escalation of such events thus requires detailed knowledge of the related phenomena and their consequences. $CO_2$ extinguishing systems are extensively used for fire accidents of on-and offshore installations because of outstanding performance and low cost. There is, however, the risk of carbon dioxide system which enumerates many of the fatalities by suffocation associated with industrial fire protection requirements. Therefore, the aim of this study is to perform the prediction of fire suppression characteristics of the carbon dioxide system in realistic enclosed compartment area of ships and propose $CO_2$ extinguish fire fighting system for preventing suffocation accidents during fire fighting. According to CFD calculations, it can be observed and assessed that various fire profiles with $CO_2$ and $O_2$ mole fraction in the target enclosed compartment area are applicable within the proposed system. Additionally, the design of fire safety system of ships and offshore installations can utilize ventilation system and/or layout arrangement through the proposed system.

[Retracted]Gas Mask Removal Efficiency of CO, HCl, HCN, and SO2 Gas Produced by Fire ([논문철회]화재용 방독면의 CO, HCl, HCN, SO2 연소생성물 제거효율)

  • Kong, Ha-Sung;Gong, Ye-Som;Kim, Sang-Heon
    • Fire Science and Engineering
    • /
    • v.29 no.4
    • /
    • pp.57-60
    • /
    • 2015
  • The removal efficiencies by elastic fire gas mask of toxic gases CO, HCl, HCN, and $SO_2$ produced by a fire have a key role in saving lives. The elastic fire gas mask comprises a visible window, elastic hood, gas purification canister, and air vent. It does not have hair or neck thongs, which makes it easy to use and put on quickly. This research examined the removal efficiency of toxic gases by such a mask. The removal efficiencies for CO with a background concentration of 2505.0 ppm were 99.99 and 99.98% after 3.5 and 8.5 min, respectively. The residual CO concentration was drastically increased after 8.5 min. The removal efficiencies for HCl, HCN, and $SO_2$ with background concentrations of 1003.0, 399.0, and 100.3 ppm, respectively, were 100% after 20 min.

A Study on verifying the reliability of $CO_2$ Fire Extinguishing Systems through the Direct Discharge Test (이산화탄소 소화설비 직접방사시험을 통한 소화성능 신뢰성 검증 연구)

  • Lee, Se-Myeong;Moon, Sung-Woong;Ryu, Sang-Hoon
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.155-158
    • /
    • 2012
  • $CO_2$ 소화설비는 방호구역 내 적절한 설계농도를 확보하고 또한 일정 시간 유지해 주어야 충분한 소화성능을 발휘할 수가 있다. 따라서 시공 후에도 $CO_2$ 소화설비의 성능을 주기적으로 확인이 필요하다. 석유화학플랜트나 원자력발전소와 같은 국가 중요위험시설은 화재 발생시 대형피해가 발생할 수 있으므로 직접방사시험을 통해 소화성능을 검증할 필요가 있다. 본 연구는 국가 중요위험시설에 설치된 전역방출방식의 $CO_2$ 소화설비 중에서 표면화재 방호구역과 심부화재 방호구역을 각각 선정하여 $CO_2$ 소화설비의 소화성능을 검증해 보았다. 시험결과 표면화재와 심부화재 방호구역 모두 $CO_2$ 설계농도를 확보하고 있음을 확인하였으며, 심부화재의 경우 20분 이상 설계농도가 유지되었다. 본 연구를 통해 직접 방사시험 방법 및 판정방법을 소개하였으며, 국가 중요위험시설에는 직접 방사시험을 통한 소화설비 신뢰성 검증의 필요성을 제기하였다.

  • PDF

CO Formation Characteristics in Under-ventilated Fire Conditions using a PSR (Perfectly Stirred Reactor) (완전혼합반응기(PSR)를 이용한 환기부족화재조건에서 CO의 생성특성)

  • Hwang, Hae-Joo;Hwang, Cheol-Hong;Park, Chung-Hwa;Oh, Chang-Bo
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.34-37
    • /
    • 2012
  • 환기부족 구획화재에서 CO의 생성은 온도 및 조성에 큰 영향을 받으며, 구획 내의 체류시간 및 이동경로에 따라 복잡한 현상을 경험하게 된다. 그 결과 구획 내부의 CO 생성특성을 실험을 통해 상세하게 규명하는 것은 많은 한계가 있다. 이러한 배경 하에 본 연구에서는 환기부족 구획화재의 조건에서 총괄당량비에 따른 CO의 생성특성에 관한 수치해석 연구를 수행하였다. PSR(완전혼합반응기) code와 헵탄연료의 상세화학반응기구가 사용되었다. 주요 변수로서 체류시간, 온도, 반응물과 생성물의 혼합정도 그리고 열손실 등이 CO의 생성에 미치는 독립적 영향을 검토하였다. 추가로 주요반응에 의한 CO의 몰 생성률 및 소모율과 CO의 반응경로 분석을 통해 환기부족 구획화재의 조건에서 구체적인 CO 생성특성에 관한 이해가 시도되었다.

  • PDF

A Study On fire Detecting Technologies in Subway and Fire protection methodologies (지하철 역사의 화재조기감지방법 및 내화대책에 대한 연구)

  • Yang, Tae-Seon;Kim, Eun-Chong;Lee, Euig-Yong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.314-319
    • /
    • 2005
  • Nowadays, there so many fire accidents happened in subways and tunnels, buildings. In this paper, the behaviors of subway damaged by fire, the fire protection techniques for evaluating subway structures stability are presented. To protect the tunnel by fire, flame detector method is resonable.

  • PDF

A Study on the Fire Evacuation Assessment Considering Occupied Environment Variation in Existing Buildings (기존 건축물의 사용승인허가 전·후 거주환경을 고려한 화재피난성능평가 연구)

  • Kim, Hak Kyung;Choi, Doo Chan;Kim, In Tae;Kim, Hee Moon;Sim, Hye In
    • Fire Science and Engineering
    • /
    • v.30 no.6
    • /
    • pp.105-110
    • /
    • 2016
  • In Korea, fire hazard and risk analysis and response management planning related to existing decrepit buildings, including interior construction and architectural layout revision, due to various occupancy purposes have not been researched or established. Therefore, regulations and technical standards that can manage and reduce fire hazards and risks based on fire hazard analysis and evaluation are required. This study was performed based on a site survey and fire evacuation assessment including performancebased analysis in 3 actual existing buildings to find the life safety issues and provide improvement recommendations.

The Effects of the Area of Openings on the Performance of a $CO_2$ Extinguishing System -The CFD Simulations of the Oil Surface Fire in a Machine Room- (개구부 면적이 $CO_2$ 소화설비의 소화성능에 미치는 영향 -기계실 석유 표면화재의 CFD simulations-)

  • Jeon, Heung-Kyun;Choi, Young-Sang;Park, Jong-Tack
    • Fire Science and Engineering
    • /
    • v.22 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • Carbon dioxide($CO_2$) agent, which has more safely extinguished fire than any other gaseous fire extinguishing agents, has been widely used in various protected enclosures and types of fires. According to the concept of performance-based design(PBD). $CO_2$ extinguishing system to be designed is needed to be evaluated for the performance of fire suppression with possible fire scenarios in an enclosure. In this paper, CFD simulations were carried out to study the effects of opening area on the performance of $CO_2$ extinguishing system and the flow characteristics in the machine room of $100m^3$ in which kerosene spill fire happened. This study showed that time of fire suppression increased linearly in proportion to the size of opening area, and fires for each model were completely suppressed prior to the end of discharge of $CO_2$ agent. It was shown that mass flow rate through opening was influenced by the combined effects of heat release rate of fire and discharge of $CO_2$ agent. After $CO_2$ agent was completely discharged, oxygen concentrations in enclosures for each model were lower than the limit concentration of combustion.

Toxicity Evaluation of Effluent Gases from a Residental Fire by Rats (연립 주택 화재시 유독가스 방출 특성과 Rats를 이용한 독성평가)

  • Kim, Hong;Kang, Young-Goo;Kim, Dong-Hyun;Jung, Ki-Chang;Lee, Chang-Seop;Kim, Woon-Hyung
    • Fire Science and Engineering
    • /
    • v.16 no.3
    • /
    • pp.12-15
    • /
    • 2002
  • It has long been recognized that exposure to fire-induced toxic gases is a fatal hazard confront-ing people in fires. In this study, an indoor fire experiment was conducted in an unoccupied residential building located in An-san city, Kyoung-gi province, and the composition of effluent gases, which include CO, $CO_2$, $O_2$, $SO_2$, NO and $NO_2$, were measured by a gas analyzer. A group of lab rats were exposed to the toxic gases released from fire, and the blood samples of the rats were gathered every 2 minutes. A toxicity evaluation was conducted by analyzing the concentrations of Glucose, AST(GOT), ALT(GPT), CBC Count and CO(carboxy)-Hb in the blood samples. Shown from the analysis is the does-response relationship between the CO concentration that rats were exposed to and the CO-Hb concentration in rat blood.