• Title/Summary/Keyword: Co-expression Network

Search Result 110, Processing Time 0.024 seconds

Identifying long non-coding RNAs and characterizing their functional roles in swine mammary gland from colostrogenesis to lactogenesis

  • Shi, Lijun;Zhang, Longchao;Wang, Ligang;Liu, Xin;Gao, Hongmei;Hou, Xinhua;Zhao, Fuping;Yan, Hua;Cai, Wentao;Wang, Lixian
    • Animal Bioscience
    • /
    • v.35 no.6
    • /
    • pp.814-825
    • /
    • 2022
  • Objective: This study was conducted to identify the functional long non-coding RNAs (lncRNAs) for swine lactation by RNA-seq data of mammary gland. Methods: According to the RNA-seq data of swine mammary gland, we screened lncRNAs, performed differential expression analysis, and confirmed the functional lncRNAs for swine lactation by validation of genome wide association study (GWAS) signals, functional annotation and weighted gene co-expression network analysis (WGCNA). Results: We totally identified 286 differentially expressed (DE) lncRNAs in mammary gland at different stages from 14 days prior to (-) parturition to day 1 after (+) parturition, and the expressions of most of lncRNAs were strongly changed from day -2 to day +1. Further, the GWAS signals of sow milk ability trait were significantly enriched in DE lncRNAs. Functional annotation revealed that these DE lncRNAs were mainly involved in mammary gland and lactation developing, milk composition metabolism and colostrum function. By performing weighted WGCNA, we identified 7 out of 12 lncRNA-mRNA modules that were highly associated with the mammary gland at day -14, day -2, and day +1, in which, 35 lncRNAs and 319 mRNAs were involved. Conclusion: This study suggested that 18 lncRNAs and their 20 target genes were promising candidates for swine parturition and colostrum occurrence processes. Our research provided new insights into lncRNA profiles and their regulating mechanisms from colostrogenesis to lactogenesis in swine.

An Action Unit co-occurrence constraint 3DCNN based Action Unit recognition approach

  • Jia, Xibin;Li, Weiting;Wang, Yuechen;Hong, SungChan;Su, Xing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.924-942
    • /
    • 2020
  • The facial expression is diverse and various among persons due to the impact of the psychology factor. Whilst the facial action is comparatively steady because of the fixedness of the anatomic structure. Therefore, to improve performance of the action unit recognition will facilitate the facial expression recognition and provide profound basis for the mental state analysis, etc. However, it still a challenge job and recognition accuracy rate is limited, because the muscle movements around the face are tiny and the facial actions are not obvious accordingly. Taking account of the moving of muscles impact each other when person express their emotion, we propose to make full use of co-occurrence relationship among action units (AUs) in this paper. Considering the dynamic characteristic of AUs as well, we adopt the 3D Convolutional Neural Network(3DCNN) as base framework and proposed to recognize multiple action units around brows, nose and mouth specially contributing in the emotion expression with putting their co-occurrence relationships as constrain. The experiments have been conducted on a typical public dataset CASME and its variant CASME2 dataset. The experiment results show that our proposed AU co-occurrence constraint 3DCNN based AU recognition approach outperforms current approaches and demonstrate the effectiveness of taking use of AUs relationship in AU recognition.

Deciphering the Core Metabolites of Fanconi Anemia by Using a Multi-Omics Composite Network

  • Xie, Xiaobin;Chen, Xiaowei
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.387-395
    • /
    • 2022
  • Deciphering the metabolites of human diseases is an important objective of biomedical research. Here, we aimed to capture the core metabolites of Fanconi anemia (FA) using the bioinformatics method of a multi-omics composite network. Based on the assumption that metabolite levels can directly mirror the physiological state of the human body, we used a multi-omics composite network that integrates six types of interactions in humans (gene-gene, disease phenotype-phenotype, disease-related metabolite-metabolite, gene-phenotype, gene-metabolite, and metabolite-phenotype) to procure the core metabolites of FA. This method is applicable in predicting and prioritizing disease candidate metabolites and is effective in a network without known disease metabolites. In this report, we first singled out the differentially expressed genes upon different groups that were related with FA and then constructed the multi-omics composite network of FA by integrating the aforementioned six networks. Ultimately, we utilized random walk with restart (RWR) to screen the prioritized candidate metabolites of FA, and meanwhile the co-expression gene network of FA was also obtained. As a result, the top 5 metabolites of FA were tenormin (TN), guanosine 5'-triphosphate, guanosine 5'-diphosphate, triphosadenine (DCF) and adenosine 5'-diphosphate, all of which were reported to have a direct or indirect relationship with FA. Furthermore, the top 5 co-expressed genes were CASP3, BCL2, HSPD1, RAF1 and MMP9. By prioritizing the metabolites, the multi-omics composite network may provide us with additional indicators closely linked to FA.

Generation and characterization of 1H8 monoclonal antibody against human bone marrow stromal cells

  • Kang, Hyung Sik;Choi, Inpyo
    • IMMUNE NETWORK
    • /
    • v.1 no.1
    • /
    • pp.14-25
    • /
    • 2001
  • Background: Bone marrow stromal cells (BMSCs) express many cell surface molecules, which regulate the proliferation and differentiation of immune cells within the bone marrow. Methods: To identify cell surface molecules, which can regulate cell proliferation through cell interaction, monoclonal antibodies (MoAbs) against BMSCs were produced. Among them, 1H8 MoAb, which recognized distinctly an 80 kDa protein, abolished myeloma cell proliferation that was induced by co-culturing with BMSCs. Results: IL-6 gene expression was increased when myeloma or stromal cells were treated with 1H8 MoAb. In addition, the expression of IL-6 receptor and CD40 was up-regulated by 1H8 treatment, suggesting that the molecule recognized by 1H8 MoAb is involved in cell proliferation by modulating the expression of cell growth-related genes. Myeloma cells contain high levels of reactive oxygen species (ROS), which are related to gene expression and tumorigenesis. Treatment with 1H8 decreased the intracellular ROS level and increased PAG antioxidant gene concomitantly. Finally, 1H8 induced the tyrosine phosphorylation of several proteins in U266. Conclusion: Taken together, 1H8 MoAb recognized the cell surface molecule and triggered the intracellular signals, which led to modulate gene expression and cell proliferation.

  • PDF

Swiprosin-1 Regulates Cytokine Expression of Human Mast Cell Line HMC-1 through Actin Remodeling

  • Ramesh, T.P.;Kim, Young-Dae;Kwon, Min-Sung;Jun, Chang-Duk;Kim, Sang-Wook
    • IMMUNE NETWORK
    • /
    • v.9 no.6
    • /
    • pp.274-284
    • /
    • 2009
  • Background: Swiprosin-1 was identified in human CD8+ lymphocytes, mature B cells and non-lymphonoid tissue. We have recently reported that swiprosin-1 is expressed in mast cells and up-regulated in both in vitro and in vivo. Methods: The expression of cytokines and swiprosin-1 were determined by by real time PCR and conventional PCR. Pharmacological inhibitors were treated to investigate potential mechanism of swiprosin-1 in mast cell activation. Actin content was evaluated by confocal microscopy and flow cytometry. Results: The swiprosin-1 augmented PMA/A23187-induced expression of cytokines and release of histamine. However, knock-down of swiprosin-1 showed only a modest effect on PMA/A23187-induced cytokine expression, suggesting that swiprosin-1 has gain-of-function characteristics. Swiprosin-1 was found in microvilli-like membrane protrusions and highly co-localized with F-actin. Importantly, either disruption of actin by cytochalasin B or inhibition of PI3 kinase, an enzyme involved in actin remodeling, by wortmannin blocked cytokine expression only in swiprosin-1-overexpressing cells. Conclusion: These results suggest that swiprosin-1 modulates mast cell activation potentially through actin regulation.

Expression of Hepatitis B Virus X Protein in Hepatocytes Suppresses CD8+ T Cell Activity

  • Lee, Mi Jin;Jin, Young-hee;Kim, Kyongmin;Choi, Yangkyu;Kim, Hyoung-Chin;Park, Sun
    • IMMUNE NETWORK
    • /
    • v.10 no.4
    • /
    • pp.126-134
    • /
    • 2010
  • Background: $CD8^+$ T cells contribute to the clearance of Hepatitis B virus (HBV) infection and an insufficient $CD8^+$ T cell response may be one of the major factors leading to chronic HBV infection. Since the HBx antigen of HBV can up-regulate cellular expression of several immunomodulatory molecules, we hypothesized that HBx expression in hepatocytes might affect $CD8^+$ T cell activity. Methods: We analyzed the activation and apoptosis of $CD8^+$ T cells co-cultured with primary hepatocytes rendered capable of expressing HBx by recombinant baculovirus infection. Results: Expression of HBx in hepatocytes induced low production of $interferon-{\gamma}$ and apoptosis of CD8+ T cells, with no effect on CD8 T cell proliferation. However, transcriptional levels of H-2K, ICAM-1 and PD-1 ligand did not correlate with HBx expression in hepatocytes. Conclusion: Our results suggest that HBx may inhibit $CD8^+$ T cell response by regulation of $interferon-{\gamma}$ production and apoptosis.

SARS-CoV-2 Infection of Airway Epithelial Cells

  • Gwanghui Ryu;Hyun-Woo Shin
    • IMMUNE NETWORK
    • /
    • v.21 no.1
    • /
    • pp.3.1-3.16
    • /
    • 2021
  • Coronavirus disease 2019 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been spreading worldwide since its outbreak in December 2019, and World Health Organization declared it as a pandemic on March 11, 2020. SARS-CoV-2 is highly contagious and is transmitted through airway epithelial cells as the first gateway. SARS-CoV-2 is detected by nasopharyngeal or oropharyngeal swab samples, and the viral load is significantly high in the upper respiratory tract. The host cellular receptors in airway epithelial cells, including angiotensin-converting enzyme 2 and transmembrane serine protease 2, have been identified by single-cell RNA sequencing or immunostaining. The expression levels of these molecules vary by type, function, and location of airway epithelial cells, such as ciliated cells, secretory cells, olfactory epithelial cells, and alveolar epithelial cells, as well as differ from host to host depending on age, sex, or comorbid diseases. Infected airway epithelial cells by SARS-CoV-2 in ex vivo experiments produce chemokines and cytokines to recruit inflammatory cells to target organs. Same as other viral infections, IFN signaling is a critical pathway for host defense. Various studies are underway to confirm the pathophysiological mechanisms of SARS-CoV-2 infection. Herein, we review cellular entry, host-viral interactions, immune responses to SARS-CoV-2 in airway epithelial cells. We also discuss therapeutic options related to epithelial immune reactions to SARS-CoV-2.

Expression of Co-stimulatory Molecules and STAT/SOCS Signaling Factors in the Splenocytes of Mice Tolerized against Arthritis by Oral Administration of Type II Collagen (제2형 콜라겐으로 경구관용을 유도한 관절염 모델 마우스의 비장림프구내의 보조자극인자 및 STAT/SOCS 신호전달 인자의 발현 양상조사)

  • Lee, Kang-Eun;Hwang, Sue-Yun;Min, So-Youn;Kim, Ho-Youn
    • IMMUNE NETWORK
    • /
    • v.3 no.3
    • /
    • pp.248-254
    • /
    • 2003
  • Oral administration of antigen has long been used in the induction of immune tolerance in various animal models of autoimmune diseases including rheumatoid arthritis (RA). Alleveation of arthritogenic symptoms has been reported from RA patients who received oral administration of type II collagen (CII) without side effects, however its rather inconsistent therapeutic efficacy and variation among patients calls for more detailed investigation on the mechanism of oral tolerance to be settled as regular treatment for RA. In an attempt to understand the immunogenic processes underpinning tolerance induction by orally administered CII, we analyzed changes in the expression of costimulatory molecules and STAT/SOCS signaling messengers in the mouse model of collagen induced arthritis (CIA). We found thatin the spleen of CIA mice, that has been undergone repeated oral feeding of CII prior to the induction of arthritis, showed increased promortion of CTLA4 expressing lymphocytes than in the spleen of PBS fed control. On the other hand, cells expressing CD28 or ICOS were decreased in the spleen of tolerized mice. Tolerance induction by oral CII administration also enhanced the expression of STAT6 in both RNA and protein level, while not affecting the expression of STAT3. The expression of SOCS3, which hasbeen known to transmit STAT-mediated signals from Th2 type cytokines, remained unchanged in the spleen of tolerized mice. Interestingly transcript of SOCS1, which has been associated with Th1 related pathways, was only visible in the spleen of tolerized but not of control mice, suggesting that as in the case of IL-6 signaling, it may exert a feed back inhibition toward the Th1 type stimulation.

Bile Ductal Transcriptome Identifies Key Pathways and Hub Genes in Clonorchis sinensis-Infected Sprague-Dawley Rats

  • Yoo, Won Gi;Kang, Jung-Mi;Le, Huong Giang;Pak, Jhang Ho;Hong, Sung-Jong;Sohn, Woon-Mok;Na, Byoung-Kuk
    • Parasites, Hosts and Diseases
    • /
    • v.58 no.5
    • /
    • pp.513-525
    • /
    • 2020
  • Clonorchis sinensis is a food-borne trematode that infects more than 15 million people. The liver fluke causes clonorchiasis and chronical cholangitis, and promotes cholangiocarcinoma. The underlying molecular pathogenesis occurring in the bile duct by the infection is little known. In this study, transcriptome profile in the bile ducts infected with C. sinensis were analyzed using microarray methods. Differentially expressed genes (DEGs) were 1,563 and 1,457 at 2 and 4 weeks after infection. Majority of the DEGs were temporally dysregulated at 2 weeks, but 519 DEGs showed monotonically changing expression patterns that formed seven distinct expression profiles. Protein-protein interaction (PPI) analysis of the DEG products revealed 5 sub-networks and 10 key hub proteins while weighted co-expression network analysis (WGCNA)-derived gene-gene interaction exhibited 16 co-expression modules and 13 key hub genes. The DEGs were significantly enriched in 16 Kyoto Encyclopedia of Genes and Genomes pathways, which were related to original systems, cellular process, environmental information processing, and human diseases. This study uncovered a global picture of gene expression profiles in the bile ducts infected with C. sinensis, and provided a set of potent predictive biomarkers for early diagnosis of clonorchiasis.

Gene Expression Patterns Associated with Peroxisome Proliferator-activated Receptor (PPAR) Signaling in the Longissimus dorsi of Hanwoo (Korean Cattle)

  • Lim, Dajeong;Chai, Han-Ha;Lee, Seung-Hwan;Cho, Yong-Min;Choi, Jung-Woo;Kim, Nam-Kuk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.8
    • /
    • pp.1075-1083
    • /
    • 2015
  • Adipose tissue deposited within muscle fibers, known as intramuscular fat (IMF or marbling), is a major determinant of meat quality and thereby affects its economic value. The biological mechanisms that determine IMF content are therefore of interest. In this study, 48 genes involved in the bovine peroxisome proliferator-activated receptor signaling pathway, which is involved in lipid metabolism, were investigated to identify candidate genes associated with IMF in the longissimus dorsi of Hanwoo (Korean cattle). Ten genes, retinoid X receptor alpha, peroxisome proliferator-activated receptor gamma (PPARG), phospholipid transfer protein, stearoyl-CoA desaturase, nuclear receptor subfamily 1 group H member 3, fatty acid binding protein 3 (FABP3), carnitine palmitoyltransferase II, acyl-Coenzyme A dehydrogenase long chain (ACADL), acyl-Coenzyme A oxidase 2 branched chain, and fatty acid binding protein 4, showed significant effects with regard to IMF and were differentially expressed between the low- and high-marbled groups (p<0.05). Analysis of the gene co-expression network based on Pearson's correlation coefficients identified 10 up-regulated genes in the high-marbled group that formed a major cluster. Among these genes, the PPARG-FABP4 gene pair exhibited the strongest correlation in the network. Glycerol kinase was found to play a role in mediating activation of the differentially expressed genes. We categorized the 10 significantly differentially expressed genes into the corresponding downstream pathways and investigated the direct interactive relationships among these genes. We suggest that fatty acid oxidation is the major downstream pathway affecting IMF content. The PPARG/RXRA complex triggers activation of target genes involved in fatty acid oxidation resulting in increased triglyceride formation by ATP production. Our findings highlight candidate genes associated with the IMF content of the loin muscle of Korean cattle and provide insight into the biological mechanisms that determine adipose deposition within muscle.