• Title/Summary/Keyword: Co-exposure

Search Result 997, Processing Time 0.103 seconds

Effect of Trace Metal on Accumulation and Physiological Response of the Polychaete, Perinereis nuntia (미량금속 노출에 따른 갯지렁이(Perinereis nuntia)의 미량금속 축적 및 생리학적인 반응)

  • Won, Eun-Ji;Ra, Kong-Tae;Hong, Seong-Jin;Kim, Kyung-Tae;Lee, Jae-Seong;Shin, Kyung-Hoon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.4
    • /
    • pp.288-295
    • /
    • 2010
  • Metal exposure experiments using polychaete (Perinereis nuntia) as a bio-indicator of trace metals contamination were conducted to evaluate the bioaccumulation and the biomarkers responses such as metallothionein-like protein (MTLPs) and glutathione S-transferase (GST) which was simultaneously exposed to Cadmium (Cd) and Copper (Cu). Cu and Cd concentrations in polychaete were enhanced with increasing exposure time and their concentrations of aqueous medium. Initial accumulation of Cd was higher than that of Cu. Our results showed that the bioaccumulation of Cu and Cd were prohibited, especially at higher Cu levels, suggesting the different cellular uptake mechanisms when Cu and Cd are co-exist. Net accumulation rate of Cu was declined with exposure time but it did not show any significant change for Cd. Although the highest MTLPs concentration was observed at 6 hr of exposure time, it did not show any significant change related to exposure times and metals concentrations. An increase of GST activity tended to increase as a function of exposure time and metals concentrations. And GST activities in P. nuntia have similar tendency with bioconcentration factors in high concentration of Cu (treatment group IV) at post 24 h of exposure. Our results provide new information of the bioaccumulation and biomarker responses to understand the effects of co-existing contaminants (Cu and Cd) using polychaete. Further studies are required to elucidate the bioaccumulation and biomarkers responses for various contaminants.

A Study of Carbon Monoxide Oxidation on ZnO Single Crystal Surface (산화아연 단결정 면에서 일산화탄소의 산화반응에 대한 연구)

  • Jin Jun;Chong Soo Han
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.2
    • /
    • pp.183-190
    • /
    • 1993
  • The properties of oxidation reactions of carbon monoxide on ZnO (1010) were studied at the temperature range of 298∼573 K by measuring the capacitance and conductance in the insulating layer of two contacting crystal faces which vary with ZnO-gas interaction mechanisms. Exposure of the sample to CO resulted in an increase in the layer depth at 298∼373 K, while it decreased above 473 K. But the variation of the layer depth was very small in all measurements. When CO was admitted to the sample previously treated with $O_2$ at the same temperature, we observed the different features compared with the case of CO adsorption. From these results we discussed the mechanisms of CO oxidation in connection with the adsorbed oxygen species at each temperature.

  • PDF

Concentration of elemental ions released from non-precious dental casting alloys (치과주조용 비귀금속 합금의 금속 용출 수준)

  • Sakong, Joon;Park, Soo-Chul
    • Journal of Technologic Dentistry
    • /
    • v.35 no.1
    • /
    • pp.1-17
    • /
    • 2013
  • Purpose: This study was to assess the extents of the release of metals from the non-precious alloys used for dental casting by measuring the differences in the extents of the release of metals by types of alloys, pH level and elapsed time. Methods: Uniform-sized specimens(10 each) were prepared according to the Medical Device Standard of the Korea Food and Drug Administration(2010) and International Standard Organization(ISO22674, 2006), using four types of alloys(one type of Ni-Cr and one type of Co-Cr used for fixed prosthesis, and one type of Ni-Cr and one type of Co-Cr used for removable prosthesis). A total of 12 metal-release tests were performed at one-day, three-day, and two-week intervals, for up to 20 weeks. The metal ions were quantified using an Inductively Coupled Plasma-Atomic Emission Spectrometer. Results: The results showed that the extent of corrosion was higher in the ascending order of Jdium-$100^{(R)}$, Bellabond-$Plus^{(R)}$, Starloy-$C^{(R)}$, and Biosil-$F^{(R)}$. The lower the pH and the longer the elapsed time were, the greater the increase in metal corrosion. At pH 2.4, the release of Ni from Jdium-$100^{(R)}$, a Ni-Cr alloy, was up to 15 times greater than the release of Co from the Co-Cr alloy from two weeks over time, indicating that the Ni-Cr alloy is more susceptible to corrosion than the Co-Cr alloy. Conclusion: It is recommended that Co-Cr alloy, which is highly resistant to corrosion, be used for making dental prosthesis with a non-precious alloy for dental casting, and that non-precious alloy prosthesis be designed in such a way as to minimize the area of its oral exposure. For patients with non-precious alloy prostheses, a test of the presence or absence of periodontal tissue inflammation or allergic reaction around the prosthesis should be performed via regular examination, and education on the good management of the prosthesis is needed.

Polarity-tuned Gel Polymer Electrolyte Coating of High-voltage LiCoO2 Cathode Materials

  • Park, Jang-Hoon;Cho, Ju-Hyun;Kim, Jong-Su;Shim, Eun-Gi;Lee, Yun-Sung;Lee, Sang-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.2
    • /
    • pp.117-124
    • /
    • 2011
  • We demonstrate a new surface modification of high-voltage lithium cobalt oxide ($LiCoO_2$) cathode active materials for lithium-ion batteries. This approach is based on exploitation of a polarity-tuned gel polymer electrolyte (GPE) coating. Herein, two contrast polymers having different polarity are chosen: polyimide (PI) synthesized from thermally curing 4-component (pyromellitic dianhydride/biphenyl dianhydride/phenylenediamine/oxydianiline) polyamic acid (as a polar GPE) and ethylene-vinyl acetate copolymer (EVA) containing 12 wt% vinyl acetate repeating unit (as a less polar GPE). The strong affinity of polyamic acid for $LiCoO_2$ allows the resulting PI coating layer to present a highly-continuous surface film of nanometer thickness. On the other hand, the less polar EVA coating layer is poorly deposited onto the $LiCoO_2$, resulting in a locally agglomerated morphology with relatively high thickness. Based on the characterization of GPE coating layers, their structural difference on the electrochemical performance and thermal stability of high-voltage (herein, 4.4 V) $LiCoO_2$ is thoroughly investigated. In comparison to the EVA coating layer, the PI coating layer is effective in preventing the direct exposure of $LiCoO_2$ to liquid electrolyte, which thus plays a viable role in improving the high-voltage cell performance and mitigating the interfacial exothermic reaction between the charged $LiCoO_2$ and liquid electrolytes.

Effect of Ginseng Saponins on the Distribution of Brain Nerve Cells in Carbon Monoxide-intoxicated Mice and Aged Mice (인삼 사포닌이 일산화탄소중독 및 노화과정에서 생쥐의 뇌신경세포 분포에 미치는 영향)

  • Shin, Jeung-Hee;Lee, Ihn-Rhan;Cho, Geum-Hee;Yun, Jae-Soon
    • YAKHAK HOEJI
    • /
    • v.36 no.3
    • /
    • pp.269-277
    • /
    • 1992
  • The effects of ginseng saponins on the distribution of nerve cells in cerebral cortex of carbon monoxide (CO)-intoxicated mice were studied in the young ($5{\sim}8$ weeks) and aged ($43{\sim}52$ weeks) mice. Mice were exposed to 5000 ppm of CO for 40 minutes (72% HbCO). After that, nerve cells in motor(area 4), somatosensory(area 3) and visual(area 17) area of cerebral cortex was observed. In young mice, the number of nerve cells in each area was significantly decreased on 1st, 7th and 14th day after CO intoxication. In aged mice, that was also decreased after CO intoxication. Especially the number of the nerve cells in motor and somatosensory area was significantly decreased on 1st and 7th day, while that in visual area was decreased only on 1st day. The number of nerve cells in young mice pretreated with ginseng saponins were significantly decreased less on 7th and 14th day than that of untreated mice. The number of nerve cells in each area of normal aged mice was larger than that of normal young mice. The results suggest that CO exposure causes local degeneration or disturbance of nerve cells and delayed neurologic sequelae, while ginseng saponins might play a role of protective action on the nerve cells which were damaged by CO.

  • PDF

Synergistic effects of elevated carbon dioxide and sodium hypochlorite on survival and impairment of three phytoplankton species

  • Kim, Keunyong;Kim, Kwang Young;Kim, Ju-Hyoung;Kang, Eun Ju;Jeong, Hae Jin;Lee, Kitack
    • ALGAE
    • /
    • v.28 no.2
    • /
    • pp.173-183
    • /
    • 2013
  • Sodium hypochlorite (NaOCl) is widely used to disinfect seawater in power plant cooling systems in order to reduce biofouling, and in ballast water treatment systems to prevent transport of exotic marine species. While the toxicity of NaOCl is expected to increase by ongoing ocean acidification, and many experimental studies have shown how algal calcification, photosynthesis and growth respond to ocean acidification, no studies have investigated the relationship between NaOCl toxicity and increased $CO_2$. Therefore, we investigated whether the impacts of NaOCl on survival, chlorophyll a (Chl-a), and effective quantum yield in three marine phytoplankton belonging to different taxonomic classes are increased under high $CO_2$ levels. Our results show that all biological parameters of the three species decreased under increasing NaOCl concentration, but increasing $CO_2$ concentration alone (from 450 to 715 ${\mu}atm$) had no effect on any of these parameters in the organisms. However, due to the synergistic effects between NaOCl and $CO_2$, the survival and Chl-a content in two of the species, Thalassiosira eccentrica and Heterosigma akashiwo, were significantly reduced under high $CO_2$ when NaOCl was also elevated. The results show that combined exposure to high $CO_2$ and NaOCl results in increasing toxicity of NaOCl in some marine phytoplankton. Consequently, greater caution with use of NaOCl will be required, as its use is widespread in coastal waters.

Clinical, virological, imaging and pathological findings in a SARS CoV-2 antibody positive cat

  • Ozer, Kursat;Yilmaz, Aysun;Carossino, Mariano;Ozturk, Gulay Yuzbasioglu;Bamac, Ozge Erdogan;Tali, Hasan E.;Mahzunlar, Egemen;Cizmecigil, Utku Y.;Aydin, Ozge;Tali, Hamid B.;Yilmaz, Semaha G.;Mutlu, Zihni;Kekec, Ayse Ilgin;Turan, Nuri;Gurel, Aydin;Balasuriya, Udeni;Iqbal, Munir;Richt, Juergen A.;Yilmaz, Huseyin
    • Journal of Veterinary Science
    • /
    • v.23 no.4
    • /
    • pp.52.1-52.7
    • /
    • 2022
  • This paper reports a presumptive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in a cat. A cat with respiratory disease living with three individuals with coronavirus disease 2019 showed bilateral ground-glass opacities in the lung on X-ray and computed tomography. The clinical swabs were negative for SARS-CoV-2 RNA, but the serum was positive for SARS-CoV-2 antibodies. Interstitial pneumonia and prominent type 2 pneumocyte hyperplasia were noted on histopathology. Respiratory tissues were negative for SARS-CoV-2 RNA or antigen, but the cat was positive for feline parvovirus DNA. In conclusion, the respiratory disease and associated pathology in this cat could have been due to exposure to SARS-CoV-2.

Measurement of Carbonation Depth of Concrete in Old Buildings and Experimental Evaluation of Carbonation Degree and CO2 Absorption Using Differential Thermal Gravimetric Analysis, Part2 (노후 건축물의 콘크리트 탄산화 깊이 측정과 시차열 중량분석을 통한 탄산화도 및 CO2 흡수량 실험적 평가, Part2)

  • Lee, Sang-Hyun;Ki, Jun-Do;Cho, Hong-Bum;Park, Chang-Gun;Kim, Young-Sun;Moon, Hyung-Jae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.317-318
    • /
    • 2023
  • This study is part of the carbonation degree DB accumulation through quantitative analysis of carbonation depth, Ca(OH)2 and CO2 according to the type of finish and years of use of old concrete structures in order to predict the amount of CO2 that can be absorbed through carbonation of concrete. To this end, the depth of carbonation of the concrete core specimen is measured using an indicator, and the dry amount of water combined with CO2 in the sample is measured using a differential thermal gravimetric analyzer for samples in the carbonation area and non-carbonated area classified by the indicator, and the absorption compared to the weight of the sample. The amount of absorbed CO2 was calculated. In addition, the degree of carbonation was calculated through quantitative comparison of Ca(OH)2 in the carbonation section and non-carbonation section. In the future, we will continue to add the survey and analysis data of dismantled structures and use them as basic data for estimating the amount of carbon dioxide that can be absorbed according to the exposure conditions and years of use by concrete mix.

  • PDF

Carbon Dioxide Adsorption Study of Biochar Produced from Shiitake Mushroom Farm by-product Waste Medium (표고버섯 농가 부산물 폐배지 기반 바이오차의 이산화탄소 흡착 연구)

  • Gyuseob Song;Jinseung Kim;Juhyoung Park;Younghoon Noh;Youngchan Choi;Youngjoo Lee;Kyubock Lee
    • New & Renewable Energy
    • /
    • v.20 no.1
    • /
    • pp.135-144
    • /
    • 2024
  • The present study investigated waste medium from a domestic shiitake mushroom farm, which was pyrolyzed to produce biochar. The yield rate of the biochar was compared after exposure to various pyrolysis temperature conditions, and the characteristics of the produced biochar were analyzed. The present study focused on the carbon dioxide (CO2) adsorption capacity of the resulting biochar. The CO2 adsorption capacity exhibited a correlation with the pyrolysis temperature of the biochar, with increasing temperatures resulting in higher CO2 adsorption capacities. Brunauer-Emmett-Teller (BET) analysis showed that the CO2 adsorption capacity was related to the surface area and pore volume of the biochar. Calcium is added to the process of producing mushroom medium. Experiments were performed to investigate the CO2 adsorption capacity of the biochar from the waste medium with the addition of calcium. In addition, CO2 adsorption experiments were conducted after the pyrolysis of kenaf biochar with the addition of calcium. The results of these experiments show that calcium affected the CO2 adsorption capacity.

Protection of Primary Cultured Mouse Hepatocytes from Chemical Hypoxia-induced Injury by Hydrogen Sulfide (화학적 허혈에 의해 손상된 마우스 간세포에 대한 hydrogen sulfide의 간세포 보호 효과)

  • Lee, Min Young
    • Journal of Life Science
    • /
    • v.23 no.11
    • /
    • pp.1342-1350
    • /
    • 2013
  • We examined the effect of hydrogen sulfide ($H_2S$) in chemical hypoxia-induced injury in mouse hepatocytes. Cell viability was significantly decreased by cobalt chloride ($CoCl_2$), a well-known hypoxia mimetic agent in a time- and dose- dependent manner. Sodium hydrosulfide (NaHS, a donor of $H_2S$) pretreatment before exposure to $CoCl_2$ significantly attenuated the $CoCl_2$-induced decrease of cell viability. $CoCl_2$ treatment resulted in an increase of intracellular ROS generation, which is inhibited by NaHS or N-acetyl-cysteine (NAC, a ROS scavenger), and p38 MAPK phosphorylation, which is also blocked by NaHS or NAC. The $CoCl_2$-induced increase of the Bax/Bcl-2 ratio was attenuated by NaHS, NAC, and SB 203580 (p38 MAPK inhibitor). The $CoCl_2$-induced decrease of cell viability was also attenuated by NaHS, NAC, and SB 203580 pretreatment. Additionally, NaHS inhibited the $CoCl_2$-induced COX-2. Similar to the effect of NaHS, NAC blocked $CoCl_2$-induced COX-2 expression. Furthermore, NS-398 (a selective COX-2 inhibitor) attenuated not only the $CoCl_2$-induced increase of the Bax/Bcl-2 ratio, it also decreased cell viability. Taken together, $H_2S$ protects primary cultured mouse hepatocytes against $CoCl_2$-induced cell injury through inhibition of the ROS-activated p38 MAPK cascade and the COX-2 pathway.