• Title/Summary/Keyword: Co-evolutionary algorithm

Search Result 54, Processing Time 0.028 seconds

Development of the New Hybrid Evolutionary Algorithm for Low Vibration of Ship Structures (선박 구조물의 저진동 설계를 위한 새로운 조합 유전 알고리듬 개발)

  • Kong, Young-Mo;Choi, Su-Hyun;Song, Jin-Dae;Yang, Bo-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.164-170
    • /
    • 2006
  • This paper proposes a RSM-based hybrid evolutionary algorithm (RHEA) which combines the merits of the popular programs such as genetic algorithm (GA), tabu search method, response surface methodology (RSM). This algorithm, for improving the convergent speed that is thought to be the demerit of genetic algorithm, uses response surface methodology and simplex method. The mutation of GA offers random variety to finding the optimum solution. In this study, however, systematic variety can be secured through the use of tabu list. Efficiency of this method has been proven by applying traditional test functions and comparing the results to GA. And it was also proved that the newly suggested algorithm is very effective to find the global optimum solution to minimize the weight for avoiding the resonance of fresh water tank that is placed in the rear of ship. According to the study, GA's convergent speed in initial stages is improved by using RSM method. An optimized solution is calculated without the evaluation of additional actual objective function. In a summary, it is concluded that RHEA is a very powerful global optimization algorithm from the view point of convergent speed and global search ability.

  • PDF

A study on the structure evolution of neural networks using genetic algorithms (유전자 알고리즘을 이용한 신경회로망의 구조 진화에 관한 연구)

  • 김대준;이상환;심귀보
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.223-226
    • /
    • 1997
  • Usually, the Evolutionary Algorithms(EAs) are considered more efficient for optimal, system design because EAs can provide higher opportunity for obtaining the global optimal solution. This paper presents a mechanism of co-evolution consists of the two genetic algorithms(GAs). This mechanism includes host populations and parasite populations. These two populations are closely related to each other, and the parasite populations plays an important role of searching for useful schema in host populations. Host population represented by feedforward neural network and the result of co-evolution we will find the optimal structure of the neural network. We used the genetic algorithm that search the structure of the feedforward neural network, and evolution strategies which train the weight of neuron, and optimize the net structure. The validity and effectiveness of the proposed method is exemplified on the stabilization and position control of the inverted-pendulum system.

  • PDF

Optimal Design of a Linear Structural Control System Considering Loading Uncertainties (하중의 불확실성을 고려한 선형구조제어 시스템의 최적설계)

  • Park, Won-Suk;Park, Kwan-Soon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.1-9
    • /
    • 2011
  • An optimal design method for a structural control system considering load variations due to their uncertain characteristics is studied in this paper. The conventional design problem for a control system generally deals with the optimization problem of a structural control system and interaction between the structure and the control device. This study deals with the optimization problem of a load-structure-control system and the more complicated interactions with each other. The problem of finding the load that maximizes the structural responses and the structural control system that minimizes the responses simultaneously is formulated as the min-max problem. In order to effectively obtain the optimal design variables, a co-evolutionary algorithm is adopted and, as a result, an optimal design procedure for the linear structural control system with uncertain dynamic characteristics is proposed. The example design and simulated results of an earthquake excited structure validates the proposed method.

Observation of Bargaining Game using Co-evolution between Particle Swarm Optimization and Differential Evolution (입자군집최적화와 차분진화알고리즘 간의 공진화를 활용한 교섭게임 관찰)

  • Lee, Sangwook
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.11
    • /
    • pp.549-557
    • /
    • 2014
  • Recently, analysis of bargaining game using evolutionary computation is essential issues in field of game theory. In this paper, we observe a bargaining game using co-evolution between two heterogenous artificial agents. In oder to model two artificial agents, we use a particle swarm optimization and a differential evolution. We investigate algorithm parameters for the best performance and observe that which strategy is better in the bargaining game under the co-evolution between two heterogenous artificial agents. Experimental simulation results show that particle swarm optimization outperforms differential evolution in the bargaining game.

Usefulness of Drones in the Urban Delivery System: Solving the Vehicle and Drone Routing Problem with Time Window (배송 네트워크에서 드론의 유용성 검증: 차량과 드론을 혼용한 배송 네트워크의 경로계획)

  • Chung, Yerim;Park, Taejoon;Min, Yunhong
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.41 no.3
    • /
    • pp.75-96
    • /
    • 2016
  • This paper investigates the usefulness of drones in an urban delivery system. We define the vehicle and drone routing problem with time window (VDRPTW) and present a model that can describe a dual mode delivery system consisting of drones and vehicles in the metropolitan area. Drones are relatively free from traffic congestion but have limited flight range and capacity. Vehicles are not free from traffic congestion, and the complexity of urban road network reduces the efficiency of vehicles. Using drones and vehicles together can reduce inefficiency of the urban delivery system because of their complementary cooperation. In this paper, we assume that drones operate in a point-to-point manner between the depot and customers, and that customers in the need of fast delivery are willing to pay additional charges. For the experiment datasets, we use instances of Solomon (1987), which are well known in the Vehicle Routing Problem society. Moreover, to mirror the urban logistics demand trend, customers who want fast delivery are added to the Solomon's instances. We propose a hybrid evolutionary algorithm for solving VDRPTW. The experiment results provide different useful insights according to the geographical distributions of customers. In the instances where customers are randomly located and in instances where some customers are randomly located while others form some clusters, the dual mode delivery system displays lower total cost and higher customer satisfaction. In instances with clustered customers, the dual mode delivery system exhibits narrow competition for the total cost with the delivery system that uses only vehicles. In this case, using drones and vehicles together can reduce the level of dissatisfaction of customers who take their cargo over the time-window. From the view point of strategic flexibility, the dual mode delivery system appears to be more interesting. In meeting the objective of maximizing customer satisfaction, the use of drones and vehicles incurs less cost and requires fewer resources.

Bargaining Game using Artificial agent based on Evolution Computation (진화계산 기반 인공에이전트를 이용한 교섭게임)

  • Seong, Myoung-Ho;Lee, Sang-Yong
    • Journal of Digital Convergence
    • /
    • v.14 no.8
    • /
    • pp.293-303
    • /
    • 2016
  • Analysis of bargaining games utilizing evolutionary computation in recent years has dealt with important issues in the field of game theory. In this paper, we investigated interaction and coevolution process among heterogeneous artificial agents using evolutionary computation in the bargaining game. We present three kinds of evolving-strategic agents participating in the bargaining games; genetic algorithms (GA), particle swarm optimization (PSO) and differential evolution (DE). The co-evolutionary processes among three kinds of artificial agents which are GA-agent, PSO-agent, and DE-agent are tested to observe which EC-agent shows the best performance in the bargaining game. The simulation results show that a PSO-agent is better than a GA-agent and a DE-agent, and that a GA-agent is better than a DE-agent with respect to co-evolution in bargaining game. In order to understand why a PSO-agent is the best among three kinds of artificial agents in the bargaining game, we observed the strategies of artificial agents after completion of game. The results indicated that the PSO-agent evolves in direction of the strategy to gain as much as possible at the risk of gaining no property upon failure of the transaction, while the GA-agent and the DE-agent evolve in direction of the strategy to accomplish the transaction regardless of the quantity.

Schema Co-Evolutionary Algorithm for Automatic Generation of fuzzy Rules (퍼지 규칙의 자동 생성을 위한 스키마 공진화 알고리즘)

  • 변광섭;이동욱;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.353-356
    • /
    • 2004
  • 비선형 시스템의 제어에서 널리 사용되는 방식이 퍼지 제어기이다. 퍼지 제어기에서 가장 중요한 것은 퍼지 룰의 설계이다. 퍼지 룰을 설계하는 많은 기법들이 제안되어 있는데, 최근 들어 진화 알고리즘에 대한 관심이 증가하고 있다 그 중에서도 공생적 공진화 알고리즘이 최적의 퍼지룰을 찾기 위해 이용되는데, 본 논문에서는 스키마 공진화 알고리즘을 이용한다. 스키마 공진화 알고리즘의 성능을 입증하기 위해, 이동 로봇의 행동제어를 위한 퍼지 제어기를 스키마 공진화 알고리즘을 이용하여 설계하고, 다른 공생적 공진화 알고리즘인 바이러스_진화 유전 알고리즘과 Handa의 공진화에 대해 비교하고 실험한다.

  • PDF

Weighted sum multi-objective optimization of skew composite laminates

  • Kalita, Kanak;Ragavendran, Uvaraja;Ramachandran, Manickam;Bhoi, Akash Kumar
    • Structural Engineering and Mechanics
    • /
    • v.69 no.1
    • /
    • pp.21-31
    • /
    • 2019
  • Optimizing composite structures to exploit their maximum potential is a realistic application with promising returns. In this research, simultaneous maximization of the fundamental frequency and frequency separation between the first two modes by optimizing the fiber angles is considered. A high-fidelity design optimization methodology is developed by combining the high-accuracy of finite element method with iterative improvement capability of metaheuristic algorithms. Three powerful nature-inspired optimization algorithms viz. a genetic algorithm (GA), a particle swarm optimization (PSO) variant and a cuckoo search (CS) variant are used. Advanced memetic features are incorporated in the PSO and CS to form their respective variants-RPSOLC (repulsive particle swarm optimization with local search and chaotic perturbation) and CHP (co-evolutionary host-parasite). A comprehensive set of benchmark solutions on several new problems are reported. Statistical tests and comprehensive assessment of the predicted results show CHP comprehensively outperforms RPSOLC and GA, while RPSOLC has a little superiority over GA. Extensive simulations show that the on repeated trials of the same experiment, CHP has very low variability. About 50% fewer variations are seen in RPSOLC as compared to GA on repeated trials.

Multi-objective optimization application for a coupled light water small modular reactor-combined heat and power cycle (cogeneration) systems

  • Seong Woo Kang;Man-Sung Yim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1654-1666
    • /
    • 2024
  • The goal of this research is to propose a way to maximize small modular reactor (SMR) utilization to gain better market feasibility in support of carbon neutrality. For that purpose, a comprehensive tool was developed, combining off-design thermohydraulic models, economic objective models (levelized cost of electricity, annual profit), non-economic models (saved CO2), a parameter input sampling method (Latin hypercube sampling, LHS), and a multi-objective evolutionary algorithm (Non-dominated Sorting Algorithm-2, NSGA2 method) for optimizing a SMR-combined heat and power cycle (CHP) system design. Considering multiple objectives, it was shown that NSGA2+LHS method can find better optimal solution sets with similar computational costs compared to a conventional weighted sum (WS) method. Out of multiple multi-objective optimal design configurations for a 105 MWe design generation rating, a chosen reference SMR-CHP system resulted in its levelized cost of electricity (LCOE) below $60/MWh for various heat prices, showing economic competitiveness for energy market conditions similar to South Korea. Examined economic feasibility may vary significantly based on CHP heat prices, and extensive consideration of the regional heat market may be required for SMR-CHP regional optimization. Nonetheless, with reasonable heat market prices (e.g. district heating prices comparable to those in Europe and Korea), SMR can still become highly competitive in the energy market if coupled with a CHP system.

Analysis on the Bargaining Game Using Artificial Agents (인공에이전트를 이용한 교섭게임에 관한 연구)

  • Chang, Seok-cheol;Soak, Sang-moon;Yun, Joung-il;Yoon, Jung-won;Ahn, Byung-ha
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.32 no.3
    • /
    • pp.172-179
    • /
    • 2006
  • Over the past few years, a considerable number of studies have been conducted on modeling the bargaining game using artificial agents on within-model interaction. However, very few attempts have been made at study on between-model interaction. This paper investigates the interaction and co-evolutionary process among heterogeneous artificial agents in the bargaining game. We present two kinds of the artificial agents participating in the bargaining game. They play some bargaining games with their strategies based on genetic algorithm (GA) and reinforcement learning (RL). We compare agents' performance between two agents under various conditions which are the changes of the parameters of artificial agents and the maximal number of round in the bargaining game. Finally, we discuss which agents show better performance and why the results are produced.