• Title/Summary/Keyword: Co-evaporation technology

Search Result 149, Processing Time 0.024 seconds

Progress in the co-evaporation technologies developed for high performance REBa2Cu3O7-δ films and coated conductors

  • Lee, J.W.;Yoo, S.I.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.4
    • /
    • pp.5-11
    • /
    • 2012
  • In this review article, we focus on various co-evaporation technologies developed for the fabrication of high performance $REBa_2Cu_3O_{7-{\delta}}$ (RE: Y and Rare earth elements, REBCO) superconducting films. Compared with other manufacturing technologies for REBCO films such as sputtering, pulsed laser deposition (PLD), metal-organic deposition (MOD), and metal organic chemical vapor deposition (MOCVD), the co-evaporation method has a strong advantage of higher deposition rate because metal sources can be used as precursor materials. After the first attempt to produce REBCO films by the co-evaporation method in 1987, various co-evaporation technologies for high performance REBCO films have been developed during last several decades. The key points of each co-evaporation technology are reviewed in this article, which enables us to have a good insight into a new high throughput process, called as a Reactive Co-Evaporation by Deposition and Reaction (RCE-DR).

Evaporation pressure drop of $CO_2$ in a horizontal tube (수평관내 이산화탄소의 증발 압력강하)

  • Lee Dong-Geon;Son Chang-Hyo;Oh Hoo-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.552-559
    • /
    • 2005
  • The evaporation pressure drop of $CO_2$ (R-744) in a horizontal tube was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver, a variable-speed pump. a mass flow meter, a pre-heater and evaporator (test section). The test section consists of a smooth. horizontal stainless steel tube of 7.75 mm inner diameter. The experiments were conducted at mass flux of 200 to $500\;kg/m^{2}s$, saturation temperature of $-5^{\circ}C\;to\;5^{\circ}C$. and heat flux of 10 to $40\;kW/m^2$. The test results showed the evaporation pressure drop of $CO_2$ are highly dependent on the vapor qualify, heat flux and saturation temperature. The evaporation pressure drop of $CO_2$ is very lower than that of R-22. In comparison with test results and existing correlations. the best fit of the present experimental data is obtained with the correlation of Choi et al. But existing correlations failed to predict the evaporation pressure drop of $CO_2$. Therefore, it is necessary to develop reliable and accurate predictions determining the evaporation pressure drop of $CO_2$ in a horizontal tube.

Evaporation Heat Transfer Characteristics of $CO_2$ in a Horizontal Tube

  • Son Chang-Hyo;Kim Dae-Hui;Choi Sun-Muk;Kim Young-Ryul;Oh Hoo-Kyu
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.4
    • /
    • pp.167-174
    • /
    • 2005
  • The evaporation heat transfer coefficient of $CO_2$ (R-744) in a horizontal tube was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and evaporator (test section). The test section consists of a smooth horizontal stainless steel tube of 7.75 mm inner diameter. The experiments were conducted at mass flux of 200 to $500kg/m^2s$, saturation temperature of $-5^{\circ}C\;to\;5^{\circ}C$, and heat flux of 10 to $40kW/m^2$. The test results showed the evaporation heat transfer of $CO_2$ has greater effect on nucleate boiling than convective boiling. The evaporation heat transfer coefficient of $CO_2$ is highly dependent on the vapor quality, heat flux and saturation temperature. The evaporation heat transfer coefficient of $CO_2$ is very larger than that of R-22 and R-134a. In comparison with test results and existing correlations, the best fit of the present experimental data is obtained with the correlation of Jung et al. But the existing correlations failed to predict the evaporation heat transfer coefficient of $CO_2$. Therefore, it is necessary to develop reliable and accurate predictions determining the evaporation heat transfer coefficient of $CO_2$ in a horizontal tube.

Progress in research and development for REBCO coated conductors by reactive co-evaporation

  • Oh, S.S.;Kim, H.S.;Ha, H.S.;Ko, R.K.;Ha, D.W.;Lee, H.;Moon, S.H.;Yoo, S.I.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.4
    • /
    • pp.1-5
    • /
    • 2013
  • This paper reviews recent progress in research and development (R&D) of reactive co-evaporation for high performance REBCO coated conductors in Korea. Two types of reactive co-evaporation methods were developed for the deposition of SmBCO and GdBCO superconducting layers respectively on the IBAD (Ion Beam Assisted Deposition)-MgO template in the Korean coated conductor project. Batch type reactive co-evaporation equipment and its processing were developed for SmBCO coated conductors at Korea Electrotechnology Research Institute (KERI) in conjunction with the Korea Advanced Institute of Science and Technology (KAIST), and a very high critical current exceeding 1,000 A/cm at 77 K in the self field was achieved through the optimization of deposition parameters. Reel-to-reel type reactive co-evaporation processing with a high conversion rate was also developed, while long length GdBCO coated conductors have been routinely produced by SuNAM Co. The minimum critical current of 422 A/cm-w at 77 K in self field was confirmed for 1 km-long GdBCO tape.

Evaporation Heat Transfer Characteristics of $CO_2$ in a Horizontal Tube

  • Lee Dong-Geon;Son Chang-Hyo;Oh Hoo-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.297-305
    • /
    • 2005
  • The evaporation heat transfer coefficient of $CO_2$ (R-744) in a horizontal tube was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver. a variable-speed pump. a mass flow meter. a pre-heater and evaporator (test section). The test section consists of a smooth. horizontal stainless steel tube of 7.75 mm inner diameter. The experiments were conducted at mass flux of 200 to $500\;kg/m^{2}s$. saturation temperature of $-5^{\circ}C\;to\;5^{\circ}C$. and heat flux of 10 to $40\;kW/m^2$. The test results showed the evaporation heat transfer of $CO_2$ has greatly effect on more nucleate boiling than convective boiling. The evaporation heat transfer coefficients of $CO_2$ are highly dependent on the vapor quality. heat flux and saturation temperature. The evaporation heat transfer coefficient of $CO_2$ is very larger than that of R-22 and R-134a. In making a comparison between test results and existing correlations. the present experimental data are the best fit for the correlation of Jung et al. But it was failed to predict the evaporation heat transfer coefficient of $CO_2$ using by the existing correlation. Therefore. it is necessary to develop reliable and accurate predictions determining the evaporation heat transfer coefficient of $CO_2$ in a horizontal tube.

Evaporation Heat Transfer Characteristics of Carbon Dioxide in the Inner Diameter Tube of 4.57 mm (4.57 mm 세관 열교환기 내 이산화탄소의 증발열전달 특성)

  • Ku, Hak-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.145-151
    • /
    • 2007
  • The evaporation heat transfer coefficient of $CO_2$(R-744) in a horizontal tube was investigated experimentally. The main components or the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and evaporator(test section). The test section consists of a smooth, horizontal stainless steel tube of inner diameter of 4.57 mm. The experiments were conducted at mass flux of 200 to $500\;kg/m^2s$, saturation temperature of -5 to $5^{\circ}C$, and heat flux of 10 to $40\;kW/m^2$. The test results showed the heat transfer of $CO_2$ has a greater effect on nucleate boiling more than convective boiling. Mass flux of $CO_2$ does not effect nucleate boiling too much. In comparison with test results and existing correlations, the best fit of the present experimental data is obtained with the correlation of Jung et al. But existing correlations failed to predict the evaporation heat transfer coefficient of $CO_2$, therefore, it is necessary to develope reliable and accurate predictions determining the evaporation heat transfer coefficient of $CO_2$ in a horizontal tube.

Angular dependence of critical current of SmBCO coated conductor fabricated by co-evaporation method

  • Kim, Ho-Sup;Ha, Hong-Soo;Oh, Sang-Soo;Song, Kyu-Jeong;Ko, Rock-Kil;Ha, Dong-Woo;Kim, Tae-Hyung;Youm, Do-Jun;Lee, Nam-Jin;Moon, Seung-Hyun;Yoo, Sang-Im;Park, Chan
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.2
    • /
    • pp.16-19
    • /
    • 2008
  • Angular dependence of critical current density of SmBCO coated conductor fabricated by co-evaporation method was investigated. For comparison, three samples were fabricated by a co-evaporation method and one sample was fabricated by a pulsed laser deposition process. The deposition system, named EDDC (Evaporation using Drum in Dual Chambers), is a batch type co-evaporation system, which is composed of reaction chamber and evaporation chamber. The normalized critical current density ratio ($I_c/I_c$(H//ab-plane)) of EDDC-SmBCO samples was found to be higher than that of PLD-YBCO sample in the whole range of angle. While the EDDC-SmBCO samples evidently had a peak at the angle of H//c-axis in the plot of the angular dependence of critical current, the normalized critical current of PLD-YBCO sample decreased monotonically without any peak as angle increased. The field dependence of critical current under the magnetic field parallel to the normal direction of those samples showed similar aspect in the range of $0\;G{\sim}5000\;G$.

TPS Analysis of NPB organic thin film for Belt Source Evaporation in AMOLED Manufacturing

  • Hwang, Chang-Hun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1600-1602
    • /
    • 2007
  • TPS (Temperature Programmed Sublimation) technology is known to research for the plane evaporation of the organic film.[5] Using TPS technology, the plane source evaporation of NPB organic film has been studied for the first time. The NPB organic film consists of nano scale film phase and bulk phase on a substrate. The 400 ${\AA}$ in film phase thickness of NPB sublimates at the $175^{\circ}$ of the Ta made metal plate. It was proved that the sublimation temperature of the organic film has much lower than that of the organic powder. ($130^{\circ}$ is lower for Alq3 and $90^{\circ}$ is lower for NPB.)

  • PDF

Coulometric Titration Study on the Nonstoichiometry in Copper Doped Cobaltous Oxide ((${Co_{1-x}}{Cu_x}$)$_{1-\delta}$ O (전하적정법에 의한 (${Co_{1-x}}{Cu_x}$)$_{1-\delta}$ O의 산소 부정비량 측정)

  • ;Michael Schroeder;Manfred Martin
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.8
    • /
    • pp.799-804
    • /
    • 2000
  • Coulometric titration experiments have been done for copper doped cobaltous oxide (Co1-xCux)1-$\delta$ O with various dopant concentrations. We present the obtained experimental data and compare our results to those of previous thermogravimetric investigation. The experimental data are fitted by theoretical calculations based on various defect models. For this modeling, we considered different types fo major defects like copper in substitutional and interstitial lattice sites as well as copper vacancy. We also introduced the copper evaporation effect during titration experiment into our consideration.

  • PDF

Effects of substrate temperature on the performance of $Cu_2ZnSnSe_4$ thin film solar cells fabricated by co-evaporation technique (동시진공 증발법을 이용한 $Cu_2ZnSnSe_4$ 박막 태양전지의 제조와 기판온도가 광전압 특성에 미치는 영향)

  • Jung, Sung-Hun;Ahn, Se-Jin;Yun, Jae-Ho;Gwak, Ji-Hye;Kim, Dong-Hwan;Yoon, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.85-87
    • /
    • 2009
  • Despite the success of $Cu(In,Ga)Se_2$ (CIGS) based PV technology now emerging in several industrial initiatives, concerns about the cost of In and Ga are often expressed. It is believed that the cost of those elements will eventually limit the cost reduction of this technology. one candidate to replace CIGS is $Cu_2ZnSnSe_4$ (CZTSe), fabricated by co-evaporation technique. Effects of substrate temperature of $Cu_2ZnSnSe_4$ absorber layer on the performance of thin films solar cells were investigated. As substrate temperature increased, the grain size of $Cu_2ZnSnSe_4$ films increased presumably. At a optimal condition of substrate temperature is $320^{\circ}C$, the solar cell shows a conversion efficiency of 1.79% with $V_{OC}$ of 0.213V, JSC of $16.91mA/cm^2$ and FF of 49.7%.

  • PDF