• Title/Summary/Keyword: Co-Evaporation

Search Result 496, Processing Time 0.02 seconds

Evaluation of Crack Control and Permeability of Hydrophilic PVA fiber Reinforced Cement Composite (친수성 PVA 섬유보강 시멘트 복합체의 균열제어 및 투수성 평가)

  • Won Jing-Pil;Hwang Keum-Sik;Park Chan-Gi;Park Hae-Geun
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.391-396
    • /
    • 2004
  • Plastic shrinkage crack occurs at the exposed surfaces of freshly placed concrete due to consolidation of the concrete mass and rapid evaporation of water from the surface. This so-called shrinkage crack is a major concern for concrete, especially for flat structures such as pavements, slabs for industrial factories and retaining walls. This study has been performed to obtain the plastic shrinkage and the permeability of hydrophilic poly vinyl alcohol(PVA) fiber reinforced mortar and concrete. Test results indicated that PVA fiber reinforced cement composite showed an ability to reduce the total crack area and the maximum crack width (as compared to plain and polypropylene fiber reinforced concrete). Also, according to the permeability test result, it was found that PVA fiber reinforced cement composite was more reducing than polypropylene fiber reinforced cement composite.

Characteristics of sawdust, wood shavings and their mixture from different pine species as bedding materials for Hanwoo cattle

  • Ahn, Gyu Chul;Jang, Sun Sik;Lee, Kang Yeon;Baek, Youl Chang;Oh, Young Kyoon;Park, Keun Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.5
    • /
    • pp.856-865
    • /
    • 2020
  • Objective: This study was conducted to evaluate the physicochemical properties and changes in moisture concentrations of bedding materials under the conditions of rearing Korean Hanwoo cows. Methods: Two experiments were conducted to investigate the physicochemical characteristics (Exp. I) and usefulness as beddings for rearing cattle (Exp. II) by the type of beddings such as sawdust (SD), wood shavings (WS) and sawdust+wood shavings (S+W; 1:1 in volume), and the species of pine trees from different countries of origins (China, Pinus armandii, AR; Vietnam, Pinus kesiya, KE; USA, Pinus rigida, RI). Results: In Exp. I, SD-AR showed the largest proportion (78.3%) of fine particles (250 ㎛+below 250 ㎛) and the highest bulk density (208 kg/㎥) among treatments (p<0.05). The water absorption capacity at 24 h of both S+W-RI (713%) and -KE (701%) was the highest among treatments (p<0.05) and higher than those of SD or WS alone within each species of pine tree (p<0.05). Moisture evaporation rates (%) at 12 h were ranged from 52.3 to 60.8 for SD, 69.9 to 74.4 for WS, and 72.3 to 73.5 for S+W. Total amounts (mg/㎡) of ammonia emissions were the lowest (p<0.05) in KE species among the pine species within each type of bedding material, having higher ability of ammonia absorption. In Exp II, KE species in both side A and B had lower moisture concentrations (%) than other species. Regardless of types of beddings except SD-AR, moisture concentrations of beddings within a pen were higher (p<0.01) at side A than B. Conclusion: The KE species has better physical characteristics than other beddings and more useful for rearing Hanwoo cattle than other beddings, probably caused by the differences in the method and degree of wood processing rather than the species.

A Study of Simulation on the Refrigerated Warehouse System Based on the Cold Energy of Lng Using the Pro-Ii Simulator (LNG 냉열을 이용한 냉장·냉동 창고 모사에 관한 연구)

  • HAN, DANBEE;KIM, YOONJI;YEOM, KYUIN;SHIN, JAERIN;BAEK, YOUNGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.4
    • /
    • pp.401-406
    • /
    • 2017
  • When Liquified Natural Gas (LNG) is vaporized into NG for industrial and household usage, tremendous cold energy was transferred from LNG to seawater during phase-changing process. This heat exchanger loop is not only a waste of huge cold energy, but will cause thermal pollution to the coastal fishery area also when cold water was re-injected into the sea. In this study, an innovation design has been performed to reclaim the cold energy for -35 to $62^{\circ}C$ refrigerated warehouse. Conventionally, this was done by installing mechanical refrigeration systems, necessitating tremendous electrical power to drive temperature. A closed loop LNG heat exchangers in series was designed to replace the mechanical or vapor-compression refrigeration cycle by process simulator. The process simulation software of PRO II with provision has been used to simulate this process for various conditions, what to effect on cold energy and used energy for re-liquefaction and evaporation process. In addition, through analysis the effect of the change of LNG supply pressure on sensible and latent heat, optimum operational conditions was suggested for LNG cold energy warehouse.

A Study on the Spray and Combustion Characteristics of Diesel-ethanol-biodiesel Blended Fuels in a Diesel Engine (디젤엔진에서 디젤-에탄올-바이오디젤 혼합연료의 분무 및 연소 특성에 관한 연구)

  • Park, Su-Han;Youn, In-Mo;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.76-84
    • /
    • 2010
  • The aim of this study is to analyze the effect of the ethanol blending in diesel-ethanol blended fuels on the spray and combustion characteristics in a common-rail four-cylinder diesel engine. For the analysis of the spray characteristics, the spray images were obtained using a high speed camera with metal-halide lamps. From these spray images, the macroscopic spray characteristics such as the spray tip penetration and spray cone angle were investigated. Also, the combustion characteristics including the combustion pressure and the rate of heat release were studied with the analysis of the exhaust emissions in diesel-ethanol blended fuel driven diesel engine. It can be confirmed from the experiment on spray characteristics of diesel-ethanol blended fuels that the increased ethanol blending ratio induced the decrease of the spray tip penetration after the end of the injection. The spray cone angle slightly increased by the blending of ethanol fuel. In the experiment on atomization characteristics, the ethanol blending caused the improvement of the diesel atomization performance. On the other hand, at the same engine load condition, the increase of the ethanol blending ratio lead to lengthen the ignition delays, and to decrease the peak combustion pressure and the rate of heat release. Totally, the combustion and emission characteristics of ULSD and DE10 showed similar characteristics. However, in the case of DE20, CO and HC rapidly increased, and $NO_x$ decreased. It can be believed that 20% ethanol disturbed the combustion of diesel-ethanol blended fuel due to the low cetane number and evaporation.

Preparation and Dissolution of Polyvinylpyrrolidone(PVP)-Based Solid Dispersion Systems Containing Solubilizers (가용화 조성물을 함유한 PVP형 고체분산체의 제조 및 특성)

  • Cao, Qing-Ri;Kim, Tae-Wan;Choi, Choon-Young;Kwon, Kyoung-Ae;Lee, Beom-Jin
    • Journal of Pharmaceutical Investigation
    • /
    • v.33 no.1
    • /
    • pp.7-14
    • /
    • 2003
  • The PVP-based solid dispersion systems (SDs) containing lovastatin (LOS) and solubilizers (sodium lauryl sulfate, tween 80 and oleic acid) were prepared to enhance dissolution rate of practically water insoluble LOS using solvent evaporation method. Two different organic cosolvents either acetone/ethanol or acetonitrile/ethanol were used for the preparation of SDs. The LOS contents were highly decreased when acetone/ethanol cosolvents were used. The decrease of LOS contents was not caused by acetonitrile or acetone, based on HPLC data. The surface morphology as investigated by scanning electron microscope (SEM) and angle of repose as an index of flowability of SDs were highly dependent on the type and amount of solubilizers used. Based on differential scanning calorimetry (DSC) and X-ray powder diffraction data, the SDs made crystalline LOS into amorphous structure or partially eutectic mixtures. The simultaneous use of the solubilizers in SDs was also useful to increase dissolution rate of LOS in gastric or intestinal fluid. The SDs containing solubilizers reached 76% and 60% in gastric and intestinal fluid, respectively but the commercial tablet gave only less than 4%. These solubilizers in SDs could be also applicable for enhancing dissolution and bioavailability of poorly water-soluble drugs.

Effect of Se Flux and Se Treatment on the Photovoltaic Performance of β-CIGS Solar Cells

  • Kim, Ji Hye;Cha, Eun Seok;Park, Byong Guk;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • v.3 no.2
    • /
    • pp.39-44
    • /
    • 2015
  • $Cu(In,Ga)_3Se_5$ (${\beta}-CIGS$) has a band gap of 1.35 eV which is an optimum value for high solar-energy conversion efficiency. However, ${\beta}-CIGS$ film was not well characterized yet due to lower efficiency compared to $Cu(In,Ga)Se_2$ (${\alpha}-CIGS$). In this work, ${\beta}-CIGS$ films were fabricated by a three-stage co-evaporation of elemental sources with various Se fluxes. As the Se flux increased, the crystallinity of ${\beta}-CIGS$ phase was improved from the analysis of Raman spectroscopy and a deep-level defect was reduced from the analysis of photoluminescence spectroscopy. A Se treatment of the ${\beta}-CIGS$ film at $200^{\circ}C$ increased Ga content and decreased Cu content at the surface of the film. With the Se treatment at $200^{\circ}C$, the cell efficiency was greatly improved for the CIGS films prepared with low Se flux due to the increase of short-circuit current and fill factor. It was found that the main reason of performance improvement was lower Cu content at the surface instead of higher Ga content.

Effect of Printing Conditions on Print-Through in Web Offset Printing (윤전 오프셋인쇄에서 인쇄뒤비침에 영향하는 인쇄조건에 관한 연구)

  • Jeon, Sung-Jai;Hong, Gi-Ahn;Youn, Jong-Tae
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.26 no.1
    • /
    • pp.29-38
    • /
    • 2008
  • Print-through is one of the most important attributes of print quality and has long been a subject to study. However, some aspects of print through are still in need to be enlighten. In this paper, different kinds of evaluating methods for print through are compared using densitometry, brightness, and image analysis. Printing conditions including ink feed, drying condition, and emulsification rate are systematically changed to effect print-through both on uncoated and coated commercial papers. Also several inks from different makers are introduced and compared in terms of print-through propensity. From the results, densitometry is not a good indicator for print through on the papers in this study. Ink feed has a strong effect on print through, especially for uncoated paper and should be considered in a point of optimum ink feed level in real world. Contribution of faster ink(oil) absorption seems to be more competitive than that of ink(oil) evaporation resulting in severer print-through for hot drying process. It is shown that ink-water emulsification rate increases print through at mild level but easy to decrease it with lower density due to the increase of water contents in emulsion. It is believed that the effect of absorption overwhelms that of density drop at mild emulsification level. This study does not include the effect of ink attributes in detail but shows that distinctive differences in print through may be resulted from various ink-makers and is finalized with some suggestions.

  • PDF

Physical Properties of Gelucire-based Solid Dispersions Containing Lacidipine and Release Profiles (Lacidipine 함유 Gelucire 고체분산체의 물성 및 방출)

  • Park, Jun-Bom;Choi, Jong-Seo;Lee, Seung-Chul;Lee, Ho;Lee, Beom-Jin;Kang, Chin-Yang
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.1
    • /
    • pp.9-14
    • /
    • 2010
  • Lacidipine used for the treatment of hypertension has low water solubility and is classified as BCS Class II category. Gelucire-based solid dispersions (SD) containing lacidipine were prepared by solvent evaporation method to enhance drug dissolution. The powdered forms of SD showed irregularly spherical shape. Thermal behaviors of SD from differential scanning calorimetry indicated that distinct endothermic peak of lacidipine ($184^{\circ}C$) was shifted to lower region ($150.1^{\circ}C$). Drug was present in a crystalline form. NMR spectra also showed some molecular interaction between drug and Gelucire. There was no significant difference in DSC and NMR behaviors between Gelucire 44/14 and Gelucire 50/13. The initial dissolution rate of SD-loaded tablet linearly increased both in water and in water containing 1% tween 20, and much higher than the commercial tablet, $Vaxar^{(R)}$. When the amount of SD was increased, the release rate was greater. The Gelucire 50/13 showed higher dissolution than the Gelucire 44/14. The produced solid dispersion with various kinds of excipients and making tablets, it was found that solid dispersions can increase the solubility in artificial gastric juice and finally increases dissolution rate.

Se-coated Cu-Ga-In 금속전구체 셀렌화 반응메카니즘 연구

  • Kim, U-Gyeong;Gu, Ja-Seok;Park, Hyeon-Uk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.47.2-47.2
    • /
    • 2011
  • 광전환 효율 20% (AM1.5G) 이상의 고효율 화합물 박막태양전지의 광흡수층으로 많은 관심을 받고 있는 $Cu(In,Ga)Se_2$ (CIGS) 태양전지의 광흡수층은 다양한 공정에 의해 제조가 가능하다. 현재 고효율 CIGS 셀 생성을 위해 널리 사용되고 있는 CIGS 흡수층 성장공정은 "co-evaporation (동시증발법)"과 2-step 공정이라 불리는 "precursorselenization(전구체-셀렌화)" 방법이다. 동시증발법은 개별원소 Cu, In, Ga, Se들을 고진공 분위기에서 고온(550~600$^{\circ}C$) 기판위에 증착하는 방법으로 소면적에서 가장 좋은 효율(~20%)을 보이는 공정이다. 하지만, 고온, 고진공 공정조건과 대면적 증착시 온도 및 조성 불균일 등의 문제점 등으로 상용화에 어려움이 있다. 전구체-셀렌화 공정은 1단계에서 다양한 방식(예: 스퍼터링, 전기도금, 프린팅 등) 방식으로 CuGaIn 전구체를 증착하고, 2단계에서 고온(550~600$^{\circ}C$)하에 H2Se gas 혹은 Se vapor와 반응시켜 CIGS를 생성한다. 일본의 Showa Shell와 Honda Soltec 등에 의해 이미 상업화 되었듯이, 저비용 대면적으로 상업화 가능성이 높은 공정으로 평가되고 있다. 하지만, 2단계에서 사용되는 H2Se 및 Se vapor의 유독성, 기상 Se과 금속전구체 간의 느린 셀렌화 반응속도, 셀렌화반응 후 생성된 CIGS 박막 두께방향으로의 Ga 불균일 분포, 생성된 CIGS/Mo 계면 접착력 저하 등의 문제점들이 개선, 해결되어야만 상업화에 성공할 수 있을 것이다. 본 연구에서는 Se layer가 코팅된 금속전구체의 셀렌화 반응메카니즘을 in-situ high-temperature XRD를 이용하여 연구하였다. 금속전구체는 스퍼터링, 스프레이 등 다양한 방법으로 제조되었고, 반응메카니즘 연구결과를 바탕으로 Se 코팅된 금속전구체를 이용한 급속열처리 공정의 최적화를 시도하였다.

  • PDF

Sensitivity Analysis of Climate Factors on Runoff and Soil Losses in Daecheong Reservoir Watershed using SWAT (SWAT 모형을 이용한 대청댐 유역의 기후인자에 따른 유출 및 유사량 민감도 평가)

  • Ye, Lyeong;Chung, Se-Woong;Lee, Heung-Soo;Yoon, Sung-Wan;Jeong, Hee-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.7-17
    • /
    • 2009
  • Soil and Water Assessment Tool (SWAT) was used to assess the impact of potential future climate change on the water cycle and soil loss of the Daecheong reservoir watershed. A sensitivity analysis using influence coefficient method was conducted for two selected hydrological input parameters and three selected sediment input parameters to identify the most to the least sensitive parameters. A further detailed sensitivity analysis was performed for the parameters: Manning coefficient for channel (Cn), evaporation (ESCO), and sediment concentration in lateral (LAT_SED), support practice factor (USLA_P). Calibration and verification of SWAT were performed on monthly basis for 1993~2006 and 1977~1991, respectively. The model efficiency index (EI) and coefficient of determination ($R^2$) computed for the monthly comparisons of runoffs were 0.78 and 0.76 for the calibration period, and 0.58 and 0.65 for the verification period. The results showed that the hydrological cycle in the watershed is very sensitive to climate factors. A doubling of atmospheric $CO_2$ concentrations was predicted to result in an average annual flow increase of 27.9% and annual sediment yield increase of 23.3%. Essentially linear impacts were predicted between two precipitation change scenarios of -20, and 20%, which resulted in average annual flow and sediment yield changes at Okcheon of -53.8%, 63.0% and -55.3%, 65.8%, respectively. An average annual flow increase of 46.3% and annual sediment yield increase of 36.4% was estimated for a constant humidity increase 5%. An average annual flow decrease of 9.6% and annual sediment yield increase of 216.4% was estimated for a constant temperature increase $4^{\circ}C$.