• Title/Summary/Keyword: Co-Cr-Ta-Pt recording layer

Search Result 5, Processing Time 0.016 seconds

Fine Granulation of Recording Layer in Perpendicular Magnetic Recording Media Using Oxide-interlayer (산화막중간층에 의한 수직자기기록층의 입자크기 미세화)

  • 김경환;공석현
    • Journal of Surface Science and Engineering
    • /
    • v.37 no.4
    • /
    • pp.196-199
    • /
    • 2004
  • Seedlayers with low surface energy which increases the density of nucleation sites in the initial growth region of the recording layer deposited on them was studied to reduce grain size in recording layer. The seedlayer with low surface energy was so effective to attain finer grain in magnetic upper-layers. The Ni-Fe-O intermediate layer with low surface energy was found to be effective in reduction of grain size as well as magnetic cluster size of Co-Cr-Ta-Pt recording layer. Furthermore, the reduction of grain size in Co-Cr-Ta-Pt recording layer on Ni-Fe-O intermediate layer with low surface energy led to decrease the noise level in the high recording density region.

Magnetic properties and the shapes of magnetic domain for $CoCr_{16.2}Pt_{10.8}Ta_4$ alloy films with the prior deposition of Ti layer ($CoCr_{16.2}Pt_{10.8}Ta_4$ 합금박막의 Ti 우선증착에 따른 자기적 특성과 자구형상변화)

  • 이인선;김동원
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.1
    • /
    • pp.17-22
    • /
    • 2000
  • A quaternary alloy film of $CoCr_{16.2}Pt_{10.8}Ta_4$was investigated for its magnetic properties and c-axis orientation with and without Ti underlayer. Additional elements such as Ta, Pt have been frequently introduced in CoCr alloy film for perpendicular recording as a means of improving magnetic performance. It has been reported that the addition of Pt and Ta in CoCr increase the coercivity and the magnetic isolation of columnar grains, respectively. However, CoCrPtTa perpendicular magnetic layer should be more increased its perpendicular magnetic anisotropy than at present for the application of ultrahigh recording density. The improvement of underlayers and substrate materials is one of the promised schemes to intensify the perpendicular magnetic anisotropy. In this study, the insertion of Ti underlayer shows the remarkable improvement of c-axis orientation compare with the direct deposition on the bare glass. The mechanism about this effect of Ti underlayer on CoCrPtTa is not to be clarified yet. Meanwhile, it is found that the magnetic domain of CoCrPtTa on 20 nm Ti underlayer has the continuous stripe pattern but the one of CoCrPtTa on 90 nm Ti underlayer shows the discrete mass type from the results of MFM investigation. This phenomenon is to be a distinct evidence that the improvement of perpendicular anisotropy by the adoption of Ti underlayer is originated from the reinforcement of the grain boundary segregation in CoCrPtTa alloy. Moreover, the transition of the M-H hysteresis pattern with the thickness of Ti underlayer indicates that the major contribution of Ti underlayer is not the magnetocrystalline anisotropy but the shape anisotropy due to the formation of uniform columnar grains by the nonmagnetic alloy segregation.

  • PDF

Thin Film Growth and Evaluation Method for Conventional Co-Cr Based Perpendicular Magnetic Recording Media: Problems and New Solutions

  • Saito, Shin;Hoshi, Fumikazu;Hasegawa, Daiji;Takahashi, Migaku
    • Journal of Magnetics
    • /
    • v.7 no.3
    • /
    • pp.115-125
    • /
    • 2002
  • We proposed a novel method to evaluate the magnetic properties of the initial layer and the columnar structure separately for CoCr-based perpendicular recording media. We show that the thickness of the initial layer and the intrinsic magnetocrystalline anisotropy of columnar structure can be quantitatively evaluated using the plotted product of perpendicular anisotropy to magnetic film thickness versus magnetic film thickness ($K_{u{\bot}}^{ex{p.}}$ $\times$ d$_{mag.}$ vs. d$_{mag.}$ plot). Based on the analyses, it is found that: (1) compared with CoCrPtTa media, CoCrPtB media have relatively thin initial layer, and have fine grains with homogeneous columnar structure with c-plane crystallographic orientation; (2) CoCrPtB media can be grown epitaxially on Ru or CoCr/C intermediate layer, and as the result, the magnetic properties of the media within thin thickness region of d$_{mag.}$ $\leq$ 20 nm is significantly improved; (3) the key issue of material investigation for CoCr-based perpendicular recording media will be focused on how to fabricate c-plane-oriented columnar grains well isolated with nonmagnetic substance in epitaxial-growth media, while maintaining the thermal stability of the media.

Effects of bottom recording layer on magnetic properties and read/write performance in CoCrPt perpendicular recording media

  • 홍대훈;신재남;이택동
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.182-183
    • /
    • 2002
  • 고밀도 자기기록이 가능하기 위해서는 Ku가 크고 노이즈가 작은 매체가 필요하다. CoCrPt 기록층은 보자력이 크고 열적으로 안정하나 결정립크기가 크고 결정립간 교환 상호작용이 커서 노이즈가 크다.[1][2] 한편 CoCrPt 에 Ta, B 등 제4원소를 첨가하면 결정립이 크기가 감소하고 노이즈는 감소하나 Ku가 감소하여 열적으로 불안정해진다.[3] (중략)

  • PDF