• 제목/요약/키워드: Co-Cr alloy

검색결과 302건 처리시간 0.024초

인공고관절 생체재료 마멸평가를 위한 시뮬레이터 개발 (Development of Hip Joint Simulator to Evaluate The Wear of Biomaterials Used in Total Hip Joint Replacement)

  • 이권용;윤재웅;전승범;박성길
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제33회 춘계학술대회 개최
    • /
    • pp.265-270
    • /
    • 2001
  • Hip joint simulator which Is an essential device for evaluating the wear of biomaterials (ultrahigh molecular weight polyethylene, Co-Cr alloy, alumina, etc.) used in total hip joint replacement was developed. This hip joint simulator mimics the joint motion and joint loading of human gait by adapting the 4 degree of freedom in kinematic motion (flexing/extension, adduction/abduction, Internal rotation/external rotation) and axial loading, Four stations are operated by 8 servo-motors and harmony drives. Joint leading was imposed by displacement control from a ball screw, LM guide, and spring system. Each kinematic link system operates separately or coupled modes. A heater and a thermocouple were installed for keeping the body temperature in each station.

  • PDF

치과용합금(齒科用合金)type에 따른 조성(組成) 및 경도(硬度)에 관(關)한 연구(硏究) (On Composition and HB of Dental Alloys)

  • 현중구;이병기
    • 대한치과기공학회지
    • /
    • 제7권1호
    • /
    • pp.13-18
    • /
    • 1985
  • Casting alloys, both precious and non-precious, were by heat in order to observe the change in HB and the results were : 1. The hard treatment showed 1.4 - 1.5 times as high as the soft treatment in HB. 2. The experiment shows that Au-Pt should be contained more than 75% to prevent color change. 3. Cu by hard teatment played the greatect part in creasing the solidity of Ag-Cu alloy. 4. Casting Co-Cr alloys showed little difference of HB in heat treatment.

  • PDF

A Study of mechanical properties of oxide layer removed Co-Cr-Mo abutments

  • Ryu, Jae-ho;Huh, Jung-Bo;Ro, Jung-Hoon;Yun, Mi-Jung;Jeong, Chang-Mo
    • 대한치과의사협회지
    • /
    • 제53권11호
    • /
    • pp.804-816
    • /
    • 2015
  • PURPOSE: The aim of this study was to evaluate the influence of the oxide layer removal process in the Co-Cr-Mo (CCM) abutment after casting procedure on the prosthesis settlement and screw stability. MATERIALS AND METHODS: CCM abutments of four different interface conditions (CCM-M; machined, CCM-O; oxide layer formed, CCM-B; blasted, CCM-P; polished after blasted) and gold abutment (Gold-C; Cast with type III Gold alloy) were used. The initial settling values of abutments were evaluated according to the difference of implant-abutment length when the tightening torques were applied at 5 Ncm and 30 Ncm, and the settling values of abutments caused by loading were evaluated according to the difference of implant-abutment length before and after loading with 250 N, 100000 cycle. The loss ratios of removal torque for abutment screws were evaluated according to the difference in value of removal torques under 30 Ncm tightening torque applied before and after cyclic loading. RESULTS: The CCM-P and CCM-B group showed a higher initial settling value compared with the Gold-C group (P<.05), while the Gold-C group showed the highest settling values caused by loading (P<.05) and no significant differences were observed for between CCM groups (P>.05). The loss ratio of removal torque values for the CCM-B, CCM-P groups did not differ significantly from that of the Gold-C group (P>.05). CONCLUSION: Even though the oxide layer was removed by different methods, CCM abutment with internal conical connection structure showed lower abutment settling and similar screw loosening after cyclic loading compared with gold abutment.

Shear bond strength of luting cements to fixed superstructure metal surfaces under various seating forces

  • Ozer, Fusun;Pak-Tunc, Elif;Dagli, Nesrin Esen;Ramachandran, Deepika;Sen, Deniz;Blatz, Markus Bernhard
    • The Journal of Advanced Prosthodontics
    • /
    • 제10권5호
    • /
    • pp.340-346
    • /
    • 2018
  • PURPOSE. In this study, the shear bond strengths (SBS) of luting cements to fixed superstructure metal surfaces under various seating forces were investigated. MATERIALS AND METHODS. Seven different cements [Polycarboxylate (PCC), Glass-Ionomer (GIC), Zinc phospahate (ZPC), Self-adhesive resin (RXU), Resin (C&B), and Temporary cements ((RXT) and (TCS))] were bonded to a total number of 224 square blocks ($5{\times}5{\times}3mm$) made of one pure metal [Titanium (CP Ti) and two metal alloys [Gold-Platinum (Au-Pt) and Cobalt-Chrome (Co-Cr)] under 10 N and 50 N seating forces. SBS values were determined and data were analyzed with 3-way ANOVA. Pairwise comparisons and interactions among groups were analyzed with Tukey's simultaneous confidence intervals. RESULTS. Overall mean scores indicated that Co-Cr showed the highest SBS values ($1.96{\pm}0.4$) (P<.00), while Au-Pt showed the lowest among all metals tested ($1.57{\pm}0.4$) (P<.00). Except for PCC/CP Ti, RXU/CP Ti, and GIC/Au-Pt factor level combinations (P<.00), the cements tested under 10 N seating force showed no significantly higher SBS values when compared to the values of those tested under 50 N seating force (P>.05). The PCC cement showed the highest mean SBS score ($3.59{\pm}0.07$) among all cements tested (P<.00), while the resin-based temporary luting cement RXT showed the lowest ($0.39{\pm}0.07$) (P<.00). CONCLUSION. Polycarboxylate cement provides reliable bonding performance to metal surfaces. Resin-based temporary luting cements can be used when retrievability is needed. GIC is not suitable for permanent cementation of fixed dental prostheses consisting of CP Ti or Au-Pt substructures.

Fabrication of Equiatomic CoCrFeMnNi High-Entropy Alloy by Metal Injection Molding Process Using Coarse-Sized Powders

  • Eun Seong Kim;Jae Man Park;Ji Sun Lee;Jungho Choe;Soung Yeoul Ahn;Sang Guk Jeong;Do Won Lee;Seong Jin Park;Hyoung Seop Kim
    • 한국분말재료학회지
    • /
    • 제30권1호
    • /
    • pp.1-6
    • /
    • 2023
  • High-entropy alloys (HEAs) are attracting attention because of their excellent properties and functions; however, they are relatively expensive compared with commercial alloys. Therefore, various efforts have been made to reduce the cost of raw materials. In this study, MIM is attempted using coarse equiatomic CoCrFeMnNi HEA powders. The mixing ratio (powder:binder) for HEA feedstock preparation is explored using torque rheometer. The block-shaped green parts are fabricated through a metal injection molding process using feedstock. The thermal debinding conditions are explored by thermogravimetric analysis, and solvent and thermal debinding are performed. It is densified under various sintering conditions considering the melting point of the HEA. The final product, which contains a small amount of non-FCC phase, is manufactured at a sintering temperature of 1250℃.

Characterization of the Manufacturing Process and Mechanical Properties of CoCrFeMnNi High-Entropy Alloys via Metal Injection Molding and Hot Isostatic Pressing

  • Eun Seong Kim;Jae Man Park;Do Won Lee;Hyojeong Ha;Jungho Choe;Jaemin Wang;Seong Jin Park;Byeong-Joo Lee;Hyoung Seop Kim
    • 한국분말재료학회지
    • /
    • 제31권3호
    • /
    • pp.243-254
    • /
    • 2024
  • High-entropy alloys (HEAs) have been reported to have better properties than conventional materials; however, they are more expensive due to the high cost of their main components. Therefore, research is needed to reduce manufacturing costs. In this study, CoCrFeMnNi HEAs were prepared using metal injection molding (MIM), which is a powder metallurgy process that involves less material waste than machining process. Although the MIM-processed samples were in the face-centered cubic (FCC) phase, porosity remained after sintering at 1200℃, 1250℃, and 1275℃. In this study, the hot isostatic pressing (HIP) process, which considers both temperature (1150℃) and pressure (150 MPa), was adopted to improve the quality of the MIM samples. Although the hardness of the HIP-treated samples decreased slightly and the Mn composition was significantly reduced, the process effectively eliminated many pores that remained after the 1275℃ MIM process. The HIP process can improve the quality of the alloy.

밀링 조건이 고엔트로피 합금의 미세조직 및 기계적 특성에 미치는 영향 (Influence of Milling Conditions on the Microstructural Characteristics and Mechanical Properties of Non-equiatomic High Entropy Alloy)

  • 서남혁;전준협;김광훈;박정빈;손승배;이석재
    • 한국분말재료학회지
    • /
    • 제28권2호
    • /
    • pp.103-109
    • /
    • 2021
  • High-entropy alloys have excellent mechanical properties under extreme environments, rendering them promising candidates for next-generation structural materials. It is desirable to develop non-equiatomic high-entropy alloys that do not require many expensive or heavy elements, contrary to the requirements of typical high-entropy alloys. In this study, a non-equiatomic high-entropy alloy powder Fe49.5Mn30Co10Cr10C0.5 (at.%) is prepared by high energy ball milling and fabricated by spark plasma sintering. By combining different ball milling times and ball-to-powder ratios, we attempt to find a proper mechanical alloying condition to achieve improved mechanical properties. The milled powder and sintered specimens are examined using X-ray diffraction to investigate the progress of mechanical alloying and microstructural changes. A miniature tensile specimen after sintering is used to investigate the mechanical properties. Furthermore, quantitative analysis of the microstructure is performed using electron backscatter diffraction.

Cu 용 슬러리 환경에서의 보호성 코팅이 융착 CMP 패드 컨니셔너에 미치는 영향 (Effect on protective coating of vacuum brazed CMP pad conditioner using in Cu-slurry)

  • 송민석;지원호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.434-437
    • /
    • 2005
  • Chemical Mechanical Polishing (CMP) has become an essential step in the overall semiconductor wafer fabrication technology. In general, CMP is a surface planarization method in which a silicon wafer is rotated against a polishing pad in the presence of slurry under pressure. The polishing pad, generally a polyurethane-based material, consists of polymeric foam cell walls, which aid in removal of the reaction products at the wafer interface. It has been found that the material removal rate of any polishing pad decreases due to the so-called 'pad glazing' after several wafer lots have been processed. Therefore, the pad restoration and conditioning has become essential in CMP processes to keep the urethane polishing pad at the proper friction coefficient and to allow effective slurry transport to the wafer surface. Diamond pad conditioner employs a single layer of brazed bonded diamond crystals. Due to the corrosive nature of the polishing slurry required in low pH metal CMP such as copper, it is essential to minimize the possibility of chemical interaction between very low pH slurry (pH <2) and the bond alloy. In this paper, we report an exceptional protective coated conditioner for in-situ pad conditioning in low pH Cu CMP process. The protective Cr-coated conditioner has been tested in slurry with pH levels as low as 1.5 without bond degradation.

  • PDF

Sliding Wear Behavior of Plasma Sprayed Zirconia Coatingagainst Silicon Carbide Ceramic Ball

  • Le Thuong Hien;Chae Young-Hun;Kim Seock Sam;Kim Bupmin;Yoon Sang-bo
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2004년도 학술대회지
    • /
    • pp.66-74
    • /
    • 2004
  • The sliding wear behavior of $ZrO_2-22wt\%MgO\;(MZ)\;and\;ZrO_2-8wt\%Y_2O_3\;(YZ)$ deposited on a casting aluminum alloy with bond layer (NiCrCoAlY) by plasma spray against an SiC ball was investigated under dry test conditions at room temperature. At all load conditions, the wear mechanisms of the MZ and the YZ coatings were almost the same. The wear mechanisms involved the forming of a smooth film by material transferred on the sliding surface and pullout. The wear rate of the MZ coating was less than that of the YZ coating. With an increase normal load the wear rate of the studied coatings increased. The SEM was used to examine the sliding surfaces and elucidate likely wear mechanisms. The EDX analysis of the worn surface indicated that material transfer was occurred from the SiC ball to the disk. It was suggested that the material transfer played an important role in the wear performance.

  • PDF

보론 첨가 저탄소합금강에서 Mn함량과 오스테나이트 결정입도가 경화능에 미치는 영향에 관한 연구 (Study on the Effect of Austenite Grain Size and Mn Content on Hardenability in Boron-added Low Carbon alloys Steels)

  • 허웅렬;노용식;최문성;김영희;이상윤
    • 열처리공학회지
    • /
    • 제3권4호
    • /
    • pp.23-40
    • /
    • 1990
  • This study has been carried out to investigate into some effects of Mn content with varying amounts and austenite grain size on hardenability in boron-added Fe-C-Cr-Mo alloy systems. (1) Austenite grains have been found to hardly grow in the temperature range of $900^{\circ}C$ to $950^{\circ}C$, whereas they grow rapidly in the temperature range of $975^{\circ}C$ to $1100^{\circ}C$. (2) Austenite grain growth is considerably small with increasing holding time at a given austenitizing temperature and is, in particular, hardly found to occur at a temperature of $900^{\circ}C$. (3) The hardenability improves ramarkably as Mn content is increased at three different austenitizing temperatures $900^{\circ}C$, $1000^{\circ}C$ and $1100^{\circ}C$. (4) The maximum hardenability is obtained from steels A, B and C austenitized at the $900^{\circ}C$, although Mn content is varied in each specimen.

  • PDF