• Title/Summary/Keyword: Co-Contraction

Search Result 198, Processing Time 0.029 seconds

Hypoxia-Induced EDNO Release is Further Augmented by Previous Hypoxia and Reoxygenation in Rabbit Aortic Endothelium

  • Han, Jae-Jin;Suh, Suk-Hyo;Suh, Kyung-Phil;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.2
    • /
    • pp.209-216
    • /
    • 1998
  • The present study was designed: (1) to determine whether or not hypoxia stimulates the release of endothelium-derived relaxing factors (EDRFs) from endothelial cells, and (2) to examine whether or not the hypoxia-induced EDRFs release is further augmented by previous hypoxia-reoxygenation, using bioassay system. In the bioassay experiment, rabbit aorta with endothelium was used as EDRFs donor vessel and rabbit carotid artery without endothelium as a bioassay test ring. The test ring was contracted by prostaglandin $F_{2{\alpha}}$ $(3{\times}10^{-6}\;M/L)$, which was added to the solution perfusing through the aortic segment. Hypoxia was evoked by switching the solution aerated with 95% $O_2/5%\;CO_2$ mixed gas to one aerated with 95% $N_2/5%\;CO_2$ mixed gas. When the contraction induced by prostaglandin $F_{2{\alpha}}$ reached a steady state, the solution was exchanged for hypoxic one. And then, hypoxia and reoxygenation were interchanged at intervals of 2 minutes (intermittent hypoxia). The endothelial cells were also exposed to single 10-minute hypoxia (continuous hypoxia). When the bioassay ring was superfused with the perfusate through intact aorta, hypoxia relaxed the precontracted bioassay test ring markedly. Whereas, when bioassay ring was superfused with the perfusate through denuded aorta or polyethylene tubing, hypoxia relaxed the precontracted ring slightly. The relaxation was not inhibited by indomethacin but by nitro-L-arginine or methylene blue. The hypoxia-induced relaxation was further augmented by previous hypoxia-reoxygenation and the magnitude of the relaxation by intermittent hypoxia was significantly greater than that of the relaxation by continuous hypoxia. The results suggest that hypoxia stimulates EDNO release from endothelial cells and that the hypoxia-induced EDNO release is further augmented by previous hypoxia-reoxygenation.

  • PDF

TISSUE-ENGINEERED RECONSTITUTION OF ORAL MUCOSA USING POLYDIOXANONE MESH (Polydioxanone mesh를 이용한 구강점막의 조직 공학적 재건)

  • Moon, Seon-Jae;Joo, So-Yeon;Kim, Jin;Kim, Hak-Yong;Park, Jung-Keug;Cha, In-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.29 no.4
    • /
    • pp.249-256
    • /
    • 2003
  • The lack of sufficient oral mucosa available for intra-oral reconstruction has been dealt with by the use of skin or oral mucosa grafts harvested from donor sites but grafts requires more than one surgical procedures and could cause donor site morbidity. Many investigators have attempted to increase available soft tissue by tissue engineered skin or oral mucosa replacements for clinical applications. But, reconstructed mucosa by several methods have low physical properties such as rolling and contraction. The aims of this study were to develope an in vitro experimental model that maintains an epithelial-mesenchymal interaction by organotypic raft culture, and to characterize biologic properties of three-dimensionally cultured oral mucosa embedded with Polydioxanone mesh by histological and immunohistochemical analysis. The results were as follows; 1. Oral mucosa reconstructed by three-dimensional organotypic culture revealed similar morphologic characteristics to equvalent normal oral mucosa in the point that they show stratification and differentiation. 2. The expression of cytokeratin 10/13 and involucrin in the cultured tissue showed the same pattern with normal oral mucosa suggesting that organotypic co-culture condition is able to induce cellular differentiation. 3. After insertion of polydioxanone mesh, increased tensile strength were observed. These results suggest that three-dimensional organotypic co-culture of the oral mucosa cell lines with the dermal equvalent consisting type I collagen and fibroblasts reproduce the morphologic and immunohistochemical characteristics similar to those in vivo condition. And increased physical properties by use of polydioxanone mesh will helpful for clinical applications.

General Pharmacological Properties of the New +/K+ ATPase Inhibitor DBM-819

  • Park, Woo-Kyu;Kong, Jae-Yang;Kim, Hyun-Jung;Lee, Dong-Ha;Lim, Hong;Cheon, Hyae-Gyeong
    • Biomolecules & Therapeutics
    • /
    • v.10 no.1
    • /
    • pp.19-24
    • /
    • 2002
  • The effects of a newly synthesized $H^+/K^+$ ATPase inhibitor,1-(2-methyl-4-methoxypheny)-4-[(3-hy-droxypropyl)amino] -6-methyl-2,3-dihydropyrrolo (3,2-c) quinoline (DBM-819) , on the central nervous system, isolated smooth muscle, cardiovascular and digestive systems and renal function were investigated in various experimental animals. Oral administration of DBM-819 had no effect on the central nervous system except body temperature of mice slightly decreased at doses of 15 and 50 mg/kg. DBM-819 produced a moderate analgesic effect in acetic acid-induced writhing test in mice at 50 mg/kg (p.o.). In conscious rats, DBM-819 (15 and 50 mg/kg, p.o.) showed a slight increase in blood pressure and a small decrease in heart rate. DBM-819 had an significant effect on agonist-induced contraction of guinea pig ileum at $1.5{\times}10^{-5}g/ml.$ No significant effect of DBM-819 (5 and 15 mg/kg, i.p) on urinary volume or urinary excretion of $Na^+,\;K^+$ and Cl- was observed in rats. DBM-819 had no significant effect on intestinal transport of a semisolid meal in mice at 15 and 50 mg/kg (p.o.). These findings suggest that DBM-819 exerts no significant pharmacological effects on the central nervous system and renal function at 15 mg/kg (p.o.), but produces some effects on the smooth muscle and circulatory system.

Study on Crosslinking Properties of Acrylic Pressure-Sensitive Adhesives (아크릴계 점착제의 제조와 가교물성에 관한 연구)

  • Kim, Pan Soo;Lee, Sang-Mu;Jung, Sin-Hye;Lee, Won-Ki
    • Journal of Adhesion and Interface
    • /
    • v.14 no.1
    • /
    • pp.43-48
    • /
    • 2013
  • The physical properties of the acrylic pressure sensitive adhesives (PSAs) can be easily controlled by a proper functional monomer which has functional groups for crosslinking. This study was to investigate the effect of crosslinking agents, isocyanate and epoxy types, of acrylic PSAs on adhesive properties. 2-Ethylhexyl acrylate, acrylic acid (AA), and 2-hydroxy ethyl methacrylate as monomer were used. The obtained samples with different AA contents were partially crosslinked with epoxy- or isocyanate-typed agent. Peel strength, balltack, holding power test and contraction percentage of the obtained PSA were evaluated. Most properties of acrylic PSAs were increased with AA content and acrylic PSAs with epoxy-typed crosslinking agent (4 crosslinking sites) which produces flexible link (ether), showed better properties than those of isocyanate-typed one (3 crosslinking sites).

Enhancement of Respiratory Protective and Therapeutic Effect of Salvia plebeia R. Br. Extracts in Combination with Korean Red Ginseng (배암차즈기와 홍삼 복합물의 호흡기 보호 및 질환 치료 상승 효과)

  • Shin, Han Jae;Gwak, Hyo Min;Lee, Moon Yong;Kyung, Jong Su;Jang, Kyoung Hwa;Han, Chang Kyun;Yang, Won Kyung;Kim, Seung Hyung
    • Korean Journal of Medicinal Crop Science
    • /
    • v.27 no.3
    • /
    • pp.218-231
    • /
    • 2019
  • Background: We recently reported that Salvia plebeia R. Br. extracts suppress leukotriene production and effectively inhibit the airway inflammatory response by modulating inflammatory chemokine and cytokine expression. Here, we investigated the synergistic airway anti-inflammation effect of Salvia plebeia and Panax ginseng (Korean red ginseng, KRG) that has been used to treat various immune diseases such as asthma. Methods and Results: To evaluate the synergistic airway anti-inflammatory effect of Salvia plebeia and KRG, we measured the inhibitory effect of monotheraphy with either or co-theraphy with both on leukotriene and reactive oxygen species (ROS) production. Using coal a combustion, fly ash, and diesel exhaust particle (CFD)-induced respiratory disease mouse model, we found that co-theraphy synergistically suppressed airway inflammatory signs such as alveolar wall thickness and collagen fibers deposition, and decreased the number of total cell, $CD11b^+Gr-1^+$ cells, and inflammatory cytokines (IL17A, TNF, MIP-2 and CXCL-1) in bronchoalveolar lavage (BAL) fluid. Conclusions: We confirmed respiratory protection as a therapeutic effect of the Salbia plebeia-KRG 3 : 1 complex (KGC-03-PS) via anti-tracheal muscle contraction and expectorant animal studies using a CFD-induced respiratory disease mouse model.

Study on the Short-Term Hemodynamic Effects of Experimental Cardiomyoplasty in Heart Failure Model (심부전 모델에서 실험적 심근성형술의 단기 혈역학적 효과에 관한 연구)

  • Jeong, Yoon-Seop;Youm, Wook;Lee, Chang-Ha;Kim, Wook-Seong;Lee, Young-Tak;Kim, Won-Gon
    • Journal of Chest Surgery
    • /
    • v.32 no.3
    • /
    • pp.224-236
    • /
    • 1999
  • Background: To evaluate the short-term effect of dynamic cardiomyoplasty on circulatory function and detect the related factors that can affect it, experimental cardiomyoplasties were performed under the state of normal cardiac function and heart failure. Material and Method: A total of 10 mongrel dogs weighing 20 to 30kg were divided arbitrarily into two groups. Five dogs of group A underwent cardiomyoplasty with latissimus dorsi(LD) muscle mobilization followed by a 2-week vascular delay and 6-week muscle training. Then, hemodynamic studies were conducted. In group B, doxorubicin was given to 5 dogs in an IV dose of 1 mg/kg once a week for 8 weeks to induce chronic heart failure, and simultaneous muscle training was given for preconditioning during this period. Then, cardiomyoplasties were performed and hemodynamic studies were conducted immediately after these cardiomyoplasties in group B. Result: In group A, under the state of normal cardiac function, only mean right atrial pressure significantly increased with the pacer-on(p<0.05) and the left ventricular hemodynamic parameters did not change significantly. However, with pacer-on in group B, cardiac output(CO), rate of left ventricular pressure development(dp/dt), stroke volume(SV), and left ventricular stroke work(SW) increased by 16.7${\pm}$7.2%, 9.3${\pm}$3.2%, 16.8${\pm}$8.6%, and 23.1${\pm}$9.7%, respectively, whereas left ventricular end-diastole pressure(LVEDP) and mean pulmonary capillary wedge pressure(mPCWP) decreased by 32.1${\pm}$4.6% and 17.7${\pm}$9.1%, respectively(p<0.05). In group A, imipramine was infused at the rate of 7.5mg/kg/hour for 34${\pm}$2.6 minutes to induce acute heart failure, which resulted in the reduction of cardiac output by 17.5${\pm}$2.7%, systolic left ventricular pressure by 15.8${\pm}$2.5% and the elevation of left ventricular end-diastole pressure by 54.3${\pm}$15.2%(p<0.05). With pacer-on under this state of acute heart failu e, CO, dp/dt, SV, and SW increased by 4.5${\pm}$1.8% and 3.1${\pm}$1.1%, 5.7${\pm}$3.6%, and 6.9${\pm}$4.4%, respectively, whereas LVEDP decreased by 11.7${\pm}$4.7%(p<0.05). Comparing CO, dp/dt, SV, SW and LVEDP that changed significantly with pacer-on, both under the state of acute and chronic heart failure, augmentation widths of these left ventricular hemodynamic parameters were significantly larger under the state of chronic heart failure(group B) than acute heart failure(group A)(p<0.05). On gross inspection, variable degrees of adhesion and inflammation were present in all 5 dogs of group A, including 2 dogs that showed no muscle contraction. No adhesion and inflammation were, however, present in all 5 dogs of group B, which showed vivid muscle contractions. Considering these differences in gross findings along with the following premise that the acute heart failure state was not statistically different from the chronic one in terms of left ventricular parameters(p>0.05), the larger augmentation effect seen in group B is presumed to be mainly attributed to the viability and contractility of the LD muscle. Conclusion: These results indicate that the positive circulatory augmentation effect of cardiomyoplasty is apparent only under the state of heart failure and the preservation of muscle contractility is important to maximize this effect.

  • PDF

Study on the Thickness Effect of the Separator for Lithium Secondary Batteries (리튬이차전지용 분리막의 두께에 따른 특성 연구)

  • Kim, Sang Woo;Seok, Ji-Hoo;Kim, Byung-Hyun Daniel;Cho, Hee-Min;Cho, Kuk Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.1
    • /
    • pp.7-12
    • /
    • 2014
  • There is increasing demand on the reducing the weight and the volume of the major components in lithium secondary battery to improve energy density. Separator not only provides pathway for lithium ion movement but also prevents direct contact between anode and cathode. Herein we fabricated polyethylene separator by varying biaxial stretching ratio to obtain membrane thickness of 16, 12, and $9{\mu}m$. Mechanical and thermal properties of the separator with different thickness were investigated. Also rate capability and charge-discharge cycle property up to 500 cycles were studied using coin type full-cell with $LiCoO_2$ and graphite as a cathode and an anode, respectively. All the cells using separator with different thickness demonstrated excellent capacity retention after 500cycles (around 80%). Considering the rate capability, cell using separator with thickness of $9{\mu}m$ showed best performance. Interestingly, separator thickness of $9{\mu}m$ was more resistant to heat contraction compared to that of $16{\mu}m$ separator.

Involvement of Peripheral Benzodiazepine Receptor on the Contractility of Canine Trachealis Muscle (기관근의 수축성에 대한 말초성 Benzodiazepine 수용체의 역할)

  • Rhyu, Han-Young;Choi, Hyung-Cheol;Choi, Eun-Mee;Sohn, Uy-Dong;Lee, Kwang-Youn;Kim, Won-Joon;Ha, Jeoung-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.6
    • /
    • pp.769-774
    • /
    • 1997
  • Non-neuronal high affinity binding sites for benzodiazepines have been found in many peripheral tissues including cardiac muscle and vascular smooth muscle, and have been designated as 'peripheral benzodiazepine receptor'. Benzodiazepines have been shown to induce relaxation of the ileal, vesical, and uterine smooth muscles. However, it is still unclear about possible involvement of peripheral benzodiazepine receptor on the contractility of trachealis muscle. This study was performed to investigate the role of the peripheral benzodiazepine receptor on the contractility of canine trachealis muscle. Canine trachealis muscle strips of 15 mm long were suspended in an isolated organ bath containing 1 ml of physiological salt solution maintained at $37^{\circ}C$, and aerated with $95%\;O_2/5%\;CO_2$. Isometric myography was performed, and the results of the experiments were as follows: Ro5-4684, FGIN-1-27 and clonazepam reduced a basal tone of isolated canine trachealis muscle strip concentration dependently, relaxant actions of RoS-4684 and FGIN-1-27 were antagonized by PK11195, a peripheral benzodiazepine receptor antagonist. Flumazenil, a central type antagonist, did not antagonize the relaxant action of Peripheral type agonists. Saturation binding assay of [3H]Ro5-4864 showed a high affinity$(Kd=5.33{\pm}1.27nM,\;Bmax=\;867.3{\pm}147.2\;fmol/mg\;protein)$ binding site on the canine trachealis muscle. Ro 5-4684 suppressed the bethanechol-, 5-hydroxyoyptamine- and histamine- induced contractions. Platelet activating factor (PAF) exerted strong and prolonged contraction in trachealis muscle strip. Strong tonic contraction by PAE was attenuated by Ro 5-4684, but not by WEB 2086, a PAF antagonist. Based on these results, it is concluded that the peripheral benzodiazepine receptor mediates the inhibitory regulation of contractilty of canine trachealis muscle.

  • PDF

Effect of $N^G$-nitro-L-arginine methyl ester and Methylene Blue on the Endotoxin-induced Vascular Hyporesponsiveness (세균 내독소 유발 혈관 저반응성에 대한 $N^G$-nitro-L-arginine methyl ester와 Methylene blue의 영향)

  • Choi, Hyoung-Chul;Ha, Jeoung-Hee;Lee, Kwang-Youn;Kim, Won-Joon;Sohn, Uy-Dong
    • Journal of Yeungnam Medical Science
    • /
    • v.14 no.2
    • /
    • pp.337-349
    • /
    • 1997
  • This study was undertaken to examine the intensity of involvement of inducible nitric oxide synthase (iNOS) and cyclic GMP signal transduction pathway as one of the mechanisms of vaso-relaxative action of bacterial lipopolysaccharide (LPS) on the canine femoral artery strips. Canine femoral arteries were isolated and spiral strips of 10 mm long and 2 mm wide were made in the Tyrode solution of $0-4^{\circ}C$. The strips were prepared for isometric myography in Biancani's isolated muscle chamber containing 1 ml of Tyrode solution, which was maintained with pH 7.4 by aeration with 95% $O_2$/5% $CO_2$ at $37^{\circ}C$ and nitric oxide (NO) production was measured simulltaneously with isolated nitric oxide meter. LPS induced NO production, suppressed the phenylephrine (PE) induced contraction and enhanced the acetylcholine (ACh) induced relaxation. $N^G$-nitro-L-arginine methyl ester (L-NAME), an NOS inhibitor, methylene blue, a guanylyl cyclase inhibitor, potentiated PE induced contraction and suppressed ACh induced relaxation on the LPS treated strips. The inhibitory potency of methylene blue for LPS induced vascular hyporesponsiveness was stronger than that of L-NAME. These results suggest that in canine femoral artery, both iNOS and cyclic GMP signal trnasduction pathway are related with LPS induced vascular hyporeponsiveness, but in minor with iNOS and in major with cyclic GMP signal trnasduction pathway.

  • PDF

The Study of a Diagnostic Algorithm for the Quantitative Evaluation of Stress Urinary Incontinence (복압성 요실금의 정량적 평가를 위한 진단 알고리즘에 관한 연구)

  • Min, Hae Ki;Kim, Ju Young;Noh, Si Cheol;Choi, Heung Ho
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.2
    • /
    • pp.277-287
    • /
    • 2018
  • Pelvic floor muscle is the main sub-system that maintains urinary continence. The weakness of pelvic floor muscles causes the stress urinary incontinence, and therefore the degree of functioning of pelvic floor muscles could be used as an index to assess the degree of stress urinary incontinence. In this study, the quantitative diagnosis algorithm was proposed to estimate the degree of stress urinary incontinence (SUI) by measuring the contraction pressure of pelvic floor muscle. For these reason, the contraction pressure measurement system from pelvic floor muscle was developed, and the measuring protocol was suggested to analysis the obtained data. As the results of clinical test, the proposed diagnosis algorithm shows the 80% of accuracy, and 20% of false positive diagnosis. On the other hand, false negative results were not confirmed. Consequentially, we thought that the proposed urinary incontinence diagnosis algorithm can quantitatively diagnose the progression of the stress urinary incontinence and it can be used for the development of the incontinence diagnosis system.