• Title/Summary/Keyword: Co-60 ${\gamma}-radiation$

Search Result 348, Processing Time 0.028 seconds

The Effects of Red Ginseng Extracts on Antioxidant Enzyme Activities and Lipid Peroxidation of the Kidney in ${\gamma}$-Postirradiated Mice (감마선 조사전 홍삼추출물 투여가 생쥐 신장에서 항산화 효소활성과 지질과산화 수준에 미치는 영향)

  • 김동조;장재철
    • Journal of Ginseng Research
    • /
    • v.18 no.1
    • /
    • pp.25-31
    • /
    • 1994
  • The effects of red ginseng extracts (5.5 mg/mouse: i.p.) on the activities of antioxidant enzymes (superoxide dismutase, catalase and peroxidase) and lipid peroxidation were studied in the cytosol fraction of kidney. The experiments were carried out with whole-body irradiated (6.0 Gy, $^{60}Co$) and non-irradiated ICR mice. In the red ginseng extract-treated and irradiated mice, the activities of Cu, Zn- SOD, Mn-SOD, catalase and peroxidase were significantly enhanced by 27.8, 31.9, 17.9 and 15.0%, respectively, but the contents of malondialdehyde were considerably decreased (81.OfS) after 21 days, compared with those of non-treated mice. The enhanced activities of antioxidant enzymes inhibited the increase of malondialdehyde product resulted from the ionizing radiation. These results suggest that red ginseng extracts probably play an important role in radioprotective effect. Key words Red ginseng, SOD, catalase, peroxidase, lipid peroxidation.

  • PDF

Effect of Photoperiod on Radiation-Induced Pink Mutations in Tradescantia Stamen Hairs (자주달개비 수술털에서 방사선에 의해 유발되는 분홍돌연변이에 대한 광주기의 영향)

  • 김원록;김진규
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.3
    • /
    • pp.331-335
    • /
    • 1999
  • The present study was carried out to investigate the combined effect of radiation and photoperiod (PP) regimes on Tradescantia 4430 somatic cell mutations. Potted plants were irradiated with 0.3, 0.5 and 1.0 Gy of gamma radiation from 60Co source. The plants irradiated only with gamma radiation were used as control group (CT). The somatic cell mutation rate in 0.5 Gy irradiated CT and PP20 group started to increase on the 6th day and reached a maximum value on the l0th day and 9th day after irradiation while the rate in the experimental group under 4 hours of photoperiod a day (PP4) started to increase on the l0th day and reached a maximal value on the 16th day post-irradiation. The slope of dose-response curve in CT was 5.99 ($r^2$=0.99), while it was 6.93 ($r^2$=0.98) in PP20 and 11.74 ($r^2$=0.99) in PP4, respectively. The biological efficacy of radiation in the induction of pink mutation increased by 15.7% in PP20 and 95.9 % in PP4, respectively. It is suggested that photoperiod regimes unfavorable to the plant have an additive effect on radiation-induced mutations and a delaying or inhibiting effect on cell damage repair, as well.

  • PDF

Comparative Study on Human Risk by Ionizing Radiation and Pesticide as Biological Information about Environmental Disaster (환경재해에 관한 생물정보로서의 이온화 방사선과 살충제의 인체 위해성 비교 연구)

  • Kim, Jin-Kyu;Hyun, Soung-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.4
    • /
    • pp.385-392
    • /
    • 2001
  • Environmental risk factors such as ionizing radiations, heavy metals, and pesticides can cause environmental disasters when they exist in excess. The increases in use of ionizing radiation and agricultural pesticide are somewhat related to the possibility of the disaster. The risk of radiation and pesticide was evaluated by means of the single cell gel electrophoresis (SCGE) assay on the human blood lymphocytes. The lymphocytes were irradiated with $0{\sim}2.0Gy$ of $^{60}Co$ gamma ray. Another groups of lymphocytes were exposed to various concentrations of parathion. Significantly increased tail moment, which was a marker of DNA strand breaks in SCGE assay, showed a clear dose- or concentration-response relationship. Parathion of a recommended concentration for agricultural use ($1mg {\ell}^{-1}$ ) has a strong cytotoxic effect on lymphocytes, which is equivalent to damage induced by 0.1 Gy of ${\gamma}$-ray. Furthermore, $2mg{\ell}^{-1}$ of parathion can give rise to DNA damage equivalent to that induced by 0.25 Gy at which the radiation-induced damage can start to develop into clinical symptoms. The comparative results of this study can provide an experimental basis and biological information for the prevention of environmental disaster.

  • PDF

Late Biological Effect of High-dose Radiation in the Mice (마우스에서의 고선량(高線量) 방사선(放射線)에 의한 만성장해(慢性障害))

  • Kim, Sung-ho;Kim, Young-ju;Oh, Yeong-ran;Yun, Taik-koo
    • Korean Journal of Veterinary Research
    • /
    • v.27 no.2
    • /
    • pp.269-275
    • /
    • 1987
  • Radiation-induced life shortening, carcinogenesis and other pathological changes were investigated in NIH(GP) mice after $^{60}Co-{\gamma}$ ray irradiation(100~700rads). The results were summarized as follows: 1. There were little difference in body weights, hematological examination and other clinical findings between normal and irradiated groups. 2. Mean survival time of the mice after irradiation were decreased dose-dependently. 3. Main gross findings of the mice irradiated were appeared as enlargement of spleen, thymus and lymph nodes, tumorous nodules of lung and cyst of ovary. Especially, enlargement of thymus was promineort in high dose group. 4. Microscopically, there were various findings including myeloid leukemia, thymic lymphoma, lung adenoma, adenosquamous cell carcinoma of pancreas, pneumonia and other pathological changes. Especially thymic lymphoma was highly frequent in the 700 rads group.

  • PDF

The development of a thermal neutron dosimetry using a semiconductor (반도체형 열중성자 선량 측정센서 개발)

  • Lee, Nam-Ho;Kim, Yang-Mo
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.789-792
    • /
    • 2003
  • pMOSFET having 10 ${\mu}um$ thickness Gd layer has been tested to be used as a slow neutron sensor. The total thermal neutron cross section for the Gd is 47,000 barns and the cross section value drops rapidly with increasing neutron energy. When slow neutrons are incident to the Gd layer, the conversion electrons are emitted by the neutron absorption process. The conversion electrons generate electron-hole pairs in the $SiO_2$ layer of the pMOSFET. The holes are easily trapped in Oxide and act as positive charge centers in the $SiO_2$ layer. Due to the induced positive charges, the threshold turn-on voltage of the pMOSFET is changed. We have found that the voltage change is proportional to the accumulated slow neutron dose, therefore the pMOSFET having a Gd nuclear reaction layer can be used for a slow neutron dosimeter. The Gd-pMOSFET were tested at HANARO neutron beam port and $^{60}CO$ irradiation facility to investigate slow neutron response and gamma response respectively. Also the pMOSFET without Gd layer were tested at same conditions to compare the characteristics to the Gd-pMOSFET. From the result, we have concluded that the Gd-pMOSFET is very sensitive to the slow neutron and can be used as a slow neutron dosimeter. It can also be used in a mixed radiation field by subtracting the voltage change value of a pMOSFET without Gd from the value of the Gd-pMOSFET.

  • PDF

Studies on the Preservation of Potato by Combination of Gamma-Radiation and Chemical (방사선(放射線) 및 화학약품(化學藥品) 겸용처리(兼用處理)에 의한 감자의 저장연구(貯藏硏究))

  • Kim, Sung-Kih;Park, Nou-Pung
    • Korean Journal of Food Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.159-167
    • /
    • 1975
  • Present work was conducted to investigate the combined effects of gamma-radiation and chemical treatment on the inhibition of sprouting and decay of potato tubers. Irish Cobbler, Apollo and Shimabara potato tubers were immersed in 1000, 2000 and 3000 ppm solution of salicylic acid for 2 minutes, and then irradiated at doses of 5, 10, and 15 krad using an indoor gamma room of approximately 10,000 Ci of $^{60}Co$. Treated tubers were stored for 8 months at room temperature. The results of this work are summarized as follows: 1. Moisture content of irradiated potato tubers was changed less than the control, and decreased gradually along with an extended storage period. Ascorbic acid content was remarkably decreased by gamma-radiation and an extended storage period. 2. Reducing sugar content of irradiated potato tubers tended to increase greatly compared with unirradiated potato tubers, however, starch content of irradiated potato tubers decreased compared with the control. Reducing sugar and starch content of all groups also decreased gradually along with an extended storage period. 3. The storageability of Irish Cobbler variety was best among three varieties and Shimabara variety was worst among them when gamma-radiation is treated singly or in combination with the chemical. Sprouting of potato tubers was more suppressed in combination treatment than single treatment. 4. Decay of potato tubers was more reduced in combination treatment than single treatment. Chemical treatment or gamma-radiation followed by chemical treatment had no influence on decay or spronting of potato tubers. 5. Weight loss of potato tubers was considerably increased as storage period became extended. Shrinkage was, more serious in Shimabara than in rish Cobbler.

  • PDF

Study of Naturally Occurring Radioactive Material Present in Deep Soil of the Malwa Region of Punjab State of India Using Low Level Background Gamma-Ray Spectrometry

  • Srivastava, Alok;Chahar, Vikash;Chauhan, Neeraj;Krupp, Dominik;Scherer, Ulrich W.
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.1
    • /
    • pp.16-21
    • /
    • 2022
  • Background: Epidemiological observations such as mental retardation, physical deformities, etc., in children besides different types of cancer in the adult population of the Malwa region have been reported. The present study is designed to get insight into the role of naturally occurring radioactive material (NORM) in causing detrimental health effects observed in the general population of this region. Materials and Methods: Deep soil samples were collected from different locations in the Malwa region. Their activity concentrations were determined using low-level background gammaray spectrometry. High efficiency and high purity germanium detector capped in a lead-shielded chamber having a resolution of 1.8 keV at 1,173 keV and 2.0 keV at the 1,332 keV line of 60Co was used in the present work. Data were evaluated with Genie-2000 software. Results and Discussion: Mean activity concentrations of 238U, 232Th, and 40K in deep soil were found to be 101.3 Bq/kg, 65.8 Bq/kg, and 688.6 Bq/kg, respectively. The mean activity concentration of 238U was found to be three and half times higher than the global average prescribed by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). It was further observed that the activity concentration of 232Th and 40K has a magnitude that is nearly one and half times higher than the global average prescribed by UNSCEAR. In addition, the radioisotope 137Cs which is likely to have its origin in radiation fallout was also observed. It is postulated that the NORM present in high quantity in deep soil somehow get mobilized into the water aquifers used by the general population and thereby causing harmful health problems. Conclusion: It can be stated that the present work has been able to demonstrate the use of low background gamma-ray spectrometry to understand the role of NORM in causing health-related effects in a general population of the Malwa region of Punjab, India.

Measurements of Neutron Activation and Dose Rate Induced by High-Energy Medical Linear Accelerator

  • Kwon, Na Hye;Jang, Young Jae;Kim, Jinsung;Kim, Kum Bae;Yoo, Jaeryong;Ahn, So Hyun;Kim, Dong Wook;Choi, Sang Hyoun
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.145-152
    • /
    • 2021
  • Purpose: During the treatments of cancer patients with a linear accelerator (LINAC) using photon beams with energies ≥8 MV, the components inside the LINAC head get activated through the interaction of photonuclear reaction (γ, n) and neutron capture (n, γ). We used spectroscopy and measured the dose rate for the LINAC in operation after the treatment ended. Methods: We performed spectroscopy and dose rate measurements for three units of LINACs with a portable high-purity Germanium (HPGe) detector and a survey meter. The spectra were obtained after the beams were turned off. Spectroscopy was conducted for 3,600 seconds, and the dose rate was measured three times. We identified the radionuclides for each LINAC. Results: According to gamma spectroscopy results, most of the nuclides were short-lived radionuclides with half-lives of 100 days, except for 60Co, 65Zn, and 181W nuclides. The dose rate for three LINACs obtained immediately in front of the crosshair was in the range of 0.113 to 0.129 µSv/h. The maximum and minimum dose rates measured on weekends were 0.097 µSv/h and 0.092 µSv/h, respectively. Compared with the differences in weekday data, there was no significant difference between the data measured on Saturday and Sunday. Conclusions: Most of the detected radionuclides had half-lives <100 days, and the dose rate decreased rapidly. For equipment that primarily used energies ≤10 MV, when the equipment was transferred after at least 10 minutes after shutting it down, it is expected that there will be little effect on the workers' exposure.

Experimental examination on physical and radiation shielding features of boro-silicate glasses doped with varying amounts of BaO

  • M.I. Sayyed;Abdelmoneim Saleh;Anjan Kumar;Fatma Elzahraa Mansour
    • Nuclear Engineering and Technology
    • /
    • v.56 no.8
    • /
    • pp.3378-3384
    • /
    • 2024
  • Investigations were conducted on the addition of barium's impact on the radiation shielding and physical attributes of five different glasses, designated S1-S5, with varying BaO contents. Using two point sources namely Co60 and Cs137 along with a scintillation detector [NaI(TL)], experimental measurements were made of the shielding parameters of γ-rays, namely the effective atomic number (Zeff), electron density (Nel), half-value layer (HVL), linear attenuation coefficient (μ), mass attenuation coefficient (μm), mean free path (λ), and radiation protection effectiveness at the energies of 0.664, 1.177, and 1.334 MeV, and comparisons made with recently considered glasses as well as frequently employed materials for γ-ray shielding. The results show that the examined glasses' physical and radiation shielding qualities are improved by the addition of BaO. The μ values increased from 0.245 to 0.275 cm-1 (0.662 MeV), from 0.174 to 0.198 cm-1 (1.173 MeV), and from 0.161 to 0.189 (1.332 MeV). The observed values of HVL decreased from 2.83, 3.98, and 4.3 cm to 2.5, 3.5, and 3.62 cm at 0.662, 1.173, and 1.332 MeV, respectively, for the samples S1 and S5. In addition, the S5 glass sample was determined to have the best protection against photon among all the samples that were evaluated, as well as against recently considered glasses and those materials often utilized for gamma-ray shielding purposes.

Radiation Field in PWR Plants (PWR 발전소에서의 방사선장 특성)

  • Song, Myung-Jae;Kim, Hee-Keun;Kim, Bong-Hwan;Chang, Si-Young
    • Journal of Radiation Protection and Research
    • /
    • v.17 no.2
    • /
    • pp.61-70
    • /
    • 1992
  • Photon, neutron and beta radiation fields were measured at PWR plants which are the representative types of nuclear power plant operated in Korea. The photon energy spectra were measured at locations in the auxiliary building during operation period and in the containment vessel(C/V) during shutdown period using a portable gamma spectrometer with a HPGe detector. The distribution of average energy was found to range from 440 to 780 keV in the C/V and from 280 keV to 760 keV in the auxiliary building, respectively. The average neutron energy measured at the five locations around the operation deck in the C/V in operation using a BMSS (Bonner Multi-Sphere Spectrometer) ranged from 20 keV to 210 keV. A computer code, BUNKI was used to unfold the spectrum. The beta energy spectra in the C/V and in the auxiliary building in annual outage were determined using 14 smear samples taken from the highly contaminated areas. The analysis showed that the representative corrosion product, $^{60}Co$ made main contribution to the beta energy field.

  • PDF