• Title/Summary/Keyword: Co oxide thin film

Search Result 184, Processing Time 0.029 seconds

On the Stannic Oxide Thin Film (산화 주석 박막에 대하여)

  • 박순자
    • Journal of the Korean Ceramic Society
    • /
    • v.13 no.2
    • /
    • pp.8-16
    • /
    • 1976
  • The conductive transparent film is prepared by spraying thin salt solution. In stannic chloride solution as a base solution, various dopants such as Al, Co, Cu and Ni were dissolved respectively as a chloride state and then the films were made by spraying solutions on hot glass plates. The properties of them were compared with those of the stannic salt single component film. The films doped with copper oxide and nickle oxide were improved by decreasing their sheet resistivity and temperature coefficient of resistivity. In comparison with the sheet resistivity and temperature coefficient of resistivity of stannic oxide single component film, being 2.5 K ohm/$\textrm{cm}^2$ and -1650ppm/$^{\circ}C$ respectively, its values of the film containing 15 mol % of copper oxide and formed at 40$0^{\circ}C$ were 2.5K ohm/$\textrm{cm}^2$ and -920ppm/$^{\circ}C$ respectively. The film containing 15 mol % of nickel oxide and formed at 50$0^{\circ}C$ has shown its sheet resistivity and temperature coefficient 0.7 K ohm/$\textrm{cm}^2$ and -940ppm/$^{\circ}C$ respectively.

  • PDF

Analysis of Sticking Coefficient in BSCCO Superconductor Thin Film Fabricated by Co-deposition (공증착법으로 제작한 BSCCO 초전도 박막의 부착계수 해석)

  • An, In-Soon;Chun, Min-Woo;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.300-303
    • /
    • 2001
  • BSCCO thin films are fabricated via a co-deposition process by an ion beam sputtering with an ultra-low growth rate, and sticking coefficients of the respective elements are evaluated. The sticking coefficient of Bi element exhibits a characteristic temperature dependence : almost a constant value of 0.49 below $730^{\circ}C$ and decreases linearly with temperature over $730^{\circ}C$. This temperature dependence can be elucidated from the evaporation and sublimation rates of bismuth oxide, $Bi_{2}O_{3}$, from the film surface. It is considered that the liquid phase of the bismuth oxide plays an important role in the Bi 2212 phase formation in the co-deposition process.

  • PDF

Evaluation of Sticking Coefficient in BSCCO Thin Film Fabricated by Co-sputtering

  • Lee, Hee-Kab;Park, Yong-Pil;Lee, Kwon-Hyun;Lee, Joon-Ung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.1
    • /
    • pp.80-84
    • /
    • 2000
  • BSCCO thin films are fabricated via a co-deposition process by an ion beam sputtering with an ultra-low growth rate, and sticking coefficients of the respective elements are evaluated. The sticking coeffi-cient of Bi element exhibits a characteristic temperature dependence : almost a constant value of 0.49 below 73$0^{\circ}C$ and decreases linearly with temperature over 73$0^{\circ}C$. This temperature dependence can be elucidated from the evaporation and sublimation rates of bismuth oxide, Bi\ulcornerO\ulcorner, from the film surface. It is considered that the liquid phase of the bismuth oxide plays an important role in the Bi(2212) phase formation in the co-deposition process.

  • PDF

Analysis of Sticking Coefficient in BSCCO Superconductor Thin Film Fabricated by Co-deposition (공증착법으로 제작한 BSCCO 초전도 박막의 부착계수 해석)

  • 안인순;천민우;박용필
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.300-303
    • /
    • 2001
  • BSCCO thin films are fabricated via a co-deposition process by an ion beam sputtering with an ultra-low growth rate, and sticking coefficients of the respective elements are evaluated. The sticking coefficient of Bi element exhibits a characteristic temperature dependence : almost a constant value of 0.49 below 730$^{\circ}C$ and decreases linearly with temperature over 730$^{\circ}C$. This temperature dependence can be elucidated from the evaporation and sublimation rates of bismuth oxide, Bi$_2$O$_3$, from the film surface. It is considered that the liquid phase of the bismuth oxide plays an important role in the Bi 2212 phase formation in the co-deposition process.

  • PDF

Effects of Ru Co-Sputtering on the Properties of Porous Ni Thin Films

  • Kim, Woo-Sik;Choi, Sun-Hee;Lee, Hae-Weon;Kim, Joo-Sun
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.11 s.294
    • /
    • pp.746-750
    • /
    • 2006
  • NiO films and Ru co-sputtered NiO films were deposited by reactive magnetron sputtering for micro-solid oxide fuel cell anode applications. The deposited films were reduced to form porous films. The reduction kinetics of the Ru doped NiO film was more sluggish than that of the NiO film, and the resulting microstructure of the former exhibited finer pore networks. The possibility of using the films for the anodes of single chamber micro-SOFCs was investigated using an air/fuel mixed environment. It was found that the abrupt increase in the resistance is suppressed in the Ru co-sputtered film, as compared to undoped film.

Formation of nickel oxide thin film and analysis of its electrical properties

  • Noh, Sang-Soo;Seo, Jeong-Hwan;Lee, Eung-Ahn;Lee, Seon-Gil;Park, Yong-Joon
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.52-55
    • /
    • 2005
  • Ni oxide thin films with thermal sensitivity superior to Pt and Ni thin films were formed through annealing treatment after Ni thin films were deposited by a r.f. magnetron sputtering method. Resistivity values of Ni oxide thin films were in the range of $10.5{\mu}{\Omega}cm$ to $2.84{\times}10^{4}{\mu}{\Omega}cm$ according to the degree of Ni oxidation. Also temperature coefficient of resistance(TCR) values of Ni oxide thin films depended on the degree of Ni oxidation from 2,188 ppm/$^{\circ}C$ to 5,630 ppm/$^{\circ}C$ in the temperature range of $0{\sim}150^{\circ}C$. Because of the high linear TCR and resistivity characteristics, Ni oxide thin films exhibit much higher sensitivity to flow and temperature changes than pure Ni thin films and Pt thin films.

Oxide TFT as an Emerging Technology for Next Generation Display

  • Kim, Hye-Dong;Jeong, Jae-Kyeong;Mo, Yeon-Gon;Chung, Ho-Kyoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.119-122
    • /
    • 2008
  • In this paper, we describe the current status and issues of the oxide thin-film transistors (OTFTs), which attract much attention as an emerging new backplane technology replacing conventional silicon-based TFTs technologies. First, the unique benefits of OTFTs will be presented as a backplane for large-sized AMOLED including note-book PC, second TV and HD-TV. And then, the state-of-the-art transistor performance and uniformity characteristics of OTFTs will be highlighted. The obtained a-IGZO TFTs exhibited the field-effect mobility of $18\;cm^2/Vs$, threshold voltage of 1.8 V, on/off ratio of $10^9$, and subthreshold gate swing of 0.28 V/decade. In addition, the world largest-sized 12.1-inch WXGA active-matrix organic light emitting diode (AMOLED) display is demonstrated using indium-gallium-zinc oxide (IGZO) TFTs.

  • PDF

Optical properties of the $O_2$ plasma treatment on BZO (ZnO:B) thin films for TCO of a-Si solar cells

  • Yoo, Ha-Jin;Son, Chang-Gil;Cho, Won-Tea;Park, Sang-Gi;Choi, Eun-Ha;Kwon, Gi-Chung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.454-454
    • /
    • 2010
  • In order to achieve a high efficient a-Si solar cell, the TCO (transparent conductive oxide) substrates are required to be a low sheet resistivity, a high transparency, and a textured surface with light trapping effect. Recently, a zinc oxide (ZnO) thin film attracts our attention as new coating material having a good transparent and conductive for TCO of solar cells. In this paper the optical properties of $H_2$ post-treated BZO (boron doped ZnO, ZnO:B) thin film are investigated with $O_2$-plasma treatment. The BZO thin films by MOCVD (Metal Organic Chemical Vapor Deposition) are investigated and the samples of $H_2$ post-treated BZO thin film are tested with $O_2$-plasma treatment by plasma treatment system with 13.56 MHz as RIE (Reactive Ion Etching) type. We measured the optical properties and surface morphology of BZO thin film with and without $O_2$-plasma treatment. The optical properties such as transmittance, reflectance and haze are measured with integrating sphere and ellipsometer. This result of the BZO thin film with and without $O_2$-plasma treatment is application to the TCO for solar cells.

  • PDF

Charge/discharge characteristics of $LiCoO_2$ thin film prepared by electron-beam evaporation with deposition rate and annealing temperatures (Electron-beam 증발법으로부터 증착속도 및 열처리 온도에 따른 $LiCoO_2$ 박막의 충방전 특성)

  • Nam S. C.;Cho W. I.;Cho B. W.;Yun K. S.;Chun H. S.
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.1
    • /
    • pp.46-49
    • /
    • 1999
  • Lithium cobalt oxide cathode for thin-film rechargeable lithium batteries were fablicated by electron-beam evaporation. Annealed lithium cobalt oxide, which was deposited on to stainless steel substrate, showed well-developed (003) planes of the hexagonal structure and potential plateau at $\~3.9 V$. Lithium cobalt oxide thin films had the stoichiometric Li/co ratio at high deposition rates and exhibited high discharge capacity at $15{\AA}/s$. As the annealing temperature increased, discharge capacity increased with maximum value at $700^{\circ}C$, but showed low capacity as a result of reaction with substrate above $700^{\circ}C$. Unuiformity of the lithium and cobalt in the depth profile gave initial capacity loss with charge/discharge performance.

Bi-sticking Coefficient of Bi-superconducting Thin Film Prepared by IBS Method

  • Lee, Hee-Kab;Lee, Joon-Ung;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.213-216
    • /
    • 1999
  • BSCCO thin films are fabricated via a co-deposition process by an ion beam sputtering with an ultra-low growth rate, and sticking coefficients of the respective elements are evaluated. The sticking coefficient of Bi element exhibits a characteristics temperature dependence : almost a constant value of 0.49 below 730$^{\circ}C$ and decreases linearly with temperature over 730$^{\circ}C$. This temperature dependence can be elucidated from the evaporation and sublimation rates of bismuth oxide, Bi$_2$O$_3$ from the film surface. It is considered that the liquid phase of the bismuth oxide plays an important role in the Bi(2212) phase formation in the co-deposition process.

  • PDF