• Title/Summary/Keyword: Co interlayer

Search Result 147, Processing Time 0.031 seconds

Soft Magnetic Property Depending on thickness of Free Layer in CoFe/Cu/CoFe/IrMn Spin Valve Film (CoFe/Cu/CoFe/IrMn 스핀밸브 박막의 자유층 두께 감소에 따른 연자성 자기저항 특성 연구)

  • Choi, Jong-Gu;Go, In-Suk;Gong, Yu-Mi;Kim, Min-Ho;Park, Young-Suk;Hwang, Do-Guwn;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.2
    • /
    • pp.52-56
    • /
    • 2009
  • Interlayer coupling field, coercivity, magnetoresitance ratio, and magnetic sensitivity depending on the thickness of free CoFe layer for the CoFe/Cu/CoFe/IrMn multilayer are investigated. In case of CoFe layer of $30\;{\AA}$ thickness for the CoFe(t)/Cu($25\;{\AA}$)/CoFe($60\;{\AA}$)/IrMn($80\;{\AA}$) multilayer with ferromagnet/non-magnet/ferromagnet structure induced by IrMn layer, the lowest coercivity and the highest magnetic sensitivity, which is contained soft magnetic property, are observed. On the other side, in case of CoFe layer of $90\;{\AA}$ thickness, there are the highest coercivity and the lowest magnetic sensitivity. The fabricated CoFe($30\;{\AA}$)/Cu($25\;{\AA}$)/CoFe($60\;{\AA}$)]/IrMn($80\;{\AA}$) spin valve device with $2{\times}8{\mu}m^2$ patterning size are measured by two probe method, which is selected the sensing current as the longitudinal direction and the easy axis as the transversal direction. The measuring magntoresistance ratio and magnetic sensitivity of GMR-SV device having the soft magnetic property are 3.0% and 0.3%/Oe, respectively.

Magnetoresistance effects in [Co/Cu/NiFe/Cu] Spin-valve Multilayers ([Co/Cu/NiFe/Cu] 다층박막의 자기저항효과에 관한 연구)

  • 정진봉;박창만;이기암;황도근;이상석
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.3
    • /
    • pp.203-209
    • /
    • 1995
  • A study of the dependence of the magnetoresistance in $glass\[Cu_{x\AA}\NiFe_{50\AA}\Cu_{x\AA}\Co_{50\AA}](X;\=\;8,\;10,\;14,\;18,\;22,\;26,\;28,\;38,\;48,\;58\;\AA,\;N\;=\;2,\;3,\;4,\;10,\;20)$ multilayers prepared by dc magnetron sputtering on the interlayer thickness of Cu (X), the number of multylayer(N) and annealing temperature has been performed. Resistance measurement were made by four terminal method, and the magnetic field applied to perpendicular and parallel for the current. The maximum magnetoresistance(MR) ratio(%) was appeared in the vicinity of $10\;\AA$ in Cu layer, and it was oscillated with the thickness of Cu. The MR ratio was increased with the number of layers N, however the ratio for the N = 4 layers decreased rather than the N = 3 layers. The dependence of the ratio on the annealing temperature was increased to $250^{\circ}C$.

  • PDF

Influence of Ag Film Position on the Properties of ZTO/Poly-carbonate Thin Films (Ag 성막위치에 따른 ZTO/폴리카보네이트 필름의 특성 변화)

  • Song, Young-Hwan;Eom, Tae-Young;Cheon, Joo-Yong;Cha, Byung-Chul;Choi, Dong-Hyuk;Son, Dong-Il;Kim, Daeil
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.3
    • /
    • pp.113-116
    • /
    • 2017
  • 100 nm thick Sn doped ZnO (ZTO) single layer, 15 nm thick Ag buffered ZTO (ZTO/Ag), Ag intermediated ZTO (ZTO/Ag/ZTO) and Ag capped ZTO (Ag/ZTO) films were prepared on poly-carbonate (PC) substrates by RF and DC magnetron sputtering and then the influence of the Ag thin film on the optical and electrical properties of ZTO films were investigated. As deposited ZTO thin films show the visible transmittance of 81.8%, while ZTO/Ag/ZTO trilayer films show a higher visible transmittance of 82.5% in this study. From the observed results, it can be concluded that the 15 nm thick Ag interlayer enhances the opto-electrical performance of ZTO thin films effectively for use as flexible transparent conducting oxides films in various opto-electrical applications.

Effect of spin-polarized current injection on pair tunneling properties of $Bi_2$$Sr_2$Ca$Cu_2$$O_{8+x}$ intrinsic Josephson junctions

  • Shin, Ho-Seop;Lee, Hu-Jong;Do Bang;Nguyen Khac Mac
    • Progress in Superconductivity
    • /
    • v.5 no.1
    • /
    • pp.5-8
    • /
    • 2003
  • We studied the effect of spin injection on tunneling conduction properties of intrinsic Josephson junctions formed in $Bi_2$$Sr_2$$CaCu_2$$O_{ 8+x}$ single crystals. properties of an identical stack (10${\times}$5.0${\times}$0.030 $\mu\textrm{m}^3$) of intrinsic Josephson junctions were compared for the bias current injected through Au and Co electrodes. The suppression of the superconducting gap in the $_2$ double layers and the interlayer Josephson critical current was manifested in the tunneling current-voltage characteristics of the stacks. This effect appears to be caused by the pair breaking associated with spin-polarized carriers injected from the Co electrode into the $Bi_2$$Sr_2$$_2$O$CaCu_{ 8+x}$ single crystal. This study may provide valuable information on clarifying the mechanism of high- $T_{c}$ superconductivity.y.y.

  • PDF

A study on transparent conducting films for GaN-based light emitting diodes (GaN-LED용 투명전도막에 대한 연구)

  • Lee, Kang-Young;Kim, Won;Uhm, Hyun-Seok;Kim, Eun-Kyu;Kim, Myun-Sung;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1270-1271
    • /
    • 2008
  • Effects of thin ZnO/Mg interlayers on electrical and optical properties between p-GaN and ITO were characterized for its application to GaN-LEDs. The ZnO and Mg layers were deposited to have various thicknesses (1${\sim}$6nm for ZnO and 1${\sim}$2nm for Mg) by sputtering. After RTA process, the atomic migration between Mg and ZnO and the formation of Ga vacancy were observed from SIMS depth profile, resulting in the increase of hole concentration and the reduction of band bending at the surface region of p-GaN. The sample using ZnO(2nm)/Mg(2nm) interlayer produced the lowest contact resistance with SBH(Schottky barrier height) of 0.576 eV and the transmittance higher than 83% at a wavelength of 460nm when annealed at 500$^{\circ}C$ for 3min in air ambient.

  • PDF

Size and Aspect Ratio Effects on the Magnetic Properties of a Spin-Valve Multilayer by Computer Simulation

  • Lim, S.H.;Han, S.H.;Shin, K.H.;Kim, H.J.
    • Journal of Magnetics
    • /
    • v.5 no.3
    • /
    • pp.90-98
    • /
    • 2000
  • The change in the magnetic properties of a spin-valve multilayer with the structure IrMn (9 m)/CoFe (4 nm)/Cu (2.6 nm)/CoFe (2 nm)/NiEe (6 nm) is investigated as a function of the size and the aspect ratio. At a fixed aspect ratio (the length/width ratio) of 2, the magnetostatic interactions begin to affect the magnetic properties substantially at a spin-valve length of 5 $\mum$, and, at a length of 1 $\mum$, they become even more dominant. In the case of a fixed multilayer size (2.4 $\mum$) which is indicated by the sum of the length and the width, magnetization change occurs by continuous spin-reversal and M-H loops are characterized by no or very small hysteresis at aspect ratios smaller than unity, At aspect ratios greater than unity, magnetization change occurs by spin-flip resulting in squared hysteresis loops. A very large changes in the coercivity and the bias field is observed, and these results are explained by two separate contributions to the total magnetostatic interactions: the coercivity by the self-demagnetizing field and the bias field by the interlayer magnetostatic interaction field.

  • PDF

The Application of DLC(diamond-like carbon) Film for Plastic Injection Mold by Hybrid Method of RF Sputtering and Ion Source (RF 스퍼터링과 이온소스 복합방식에 의한 플라스틱사출금형(SKD11)의 DLC막 응용)

  • Kim, Mi-Seon;Hong, Sung-Pill
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.4
    • /
    • pp.173-178
    • /
    • 2009
  • DLC film was synthesized on plastic injection mold(SKD11, $30\;mm\;{\times}\;19\;mm\;{\times}\;0.5\;mm$) and Si(100) wafer for 2 h at $130^{\circ}C$ under 6 mTorr using hybrid method of rf sputtering and ion source. The obtained film was analysed by Raman spectroscopy, AFM, TEM, Nano indenter and scratch tester, etc. The film was defined as an amorphous phase. In the Raman spectrum, broad peak of $sp^2$-bonded carbon attributed to graphite at $1550\;cm^{-1}$ were observed, and the ratio of ID($sp^3$ diamond intensity)/IG($sp^2$ graphite intensity) was approximately 0.54. The adhesion of DLC film was more than 80 N with scratch tester when $0.2\;{\mu}m$ thickness Cr was coated as interlayer. The micro-hardness was distributed at 35~37 GPa. The friction coefficient was 0.02~0.07, and surface roughness(Ra) was 0.34~1.64 nm. The lifetime of DLC coated plastic injection mold using as a connector part in computer was more than 2 times of non-coated mold.

Development of Ultrasonic Inspection System and Application to Overlay Weld Flaw Detection (초음파 자동 검사시스템의 개발과 오버레이 용접부의 결함검사)

  • Nam, Young-Hyun;Seong, Un-Hak
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.6
    • /
    • pp.562-567
    • /
    • 2000
  • Many pressure vessels for power and industrial plant are fabricated from low alloy carbon steels. The inner sides of pressure vessels are commonly weld-cladded with austenitic stainless steels to minimize problems of corrosive attack. Disbonding cracks are often detected at the transition region of welding interlayer, which is serious problem to reliability of pressure vessels. We have developed C-scan system to high speed inspection of overlay weld using DSP(digital signal processor). This system consists of signal processing parts (oscilloscope, pulser/receiver, digitizer, DSP), scanner, program and position controller. The developed system has been applied to a practical ultrasonic testing in overlay weld, and demonstrated high speed with precision

  • PDF

Three-dimensional MXene (Ti3C2Tx) Film for Radionuclide Removal From Aqueous Solution

  • Jang, Jiseon;Lee, Dae Sung
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2018.11a
    • /
    • pp.379-379
    • /
    • 2018
  • MXenes are a new family of 2D transition metal carbide nanosheets analogous to graphene (Lv et al., 2017; Sun et al., 2018). Due to the easy availability, hydrophilic behavior, and tunable chemistry of MXenes, their use in applications for environmental pollution remediation such as heavy metal adsorption has recently been explored (Li et al., 2017). In this study, three-dimensional (3D) MXene ($Ti_3C_2T_x$) films with high adsorption capacity, good mechanical strength, and high selectivity for specific radionuclide from aquose solution were successfully fabricated by a polymeric precursor method using vacuum-assisted filtration. The highest removal efficiency on the films was 99.54%, 95.61%, and 82.79% for $Sr^{2+}$, $Co^{2+}$, and $Cs^+$, respectively, using a film dosage of 0.06 g/ L in the initial radionuclide solution (each radionuclide concentration = 1 mg/L and pH = 7.0). Especially, the adsorption process reached an equilibrium within 30 min. The expanded interlayer spacing of $Ti_3C_2T_x$ sheets in MXene films showed excellent radionuclide selectivity ($Cs^+$ and/or $Sr^{2+}/Co^{2+}$) (Simon, 2017). Besides, the MXene films was not only able to be easily retrieved from an aqueous solution by filtration after decontamination processes, but also to selectively separate desired target radionuclides in the solutions. Therefore, the newly developed MXene ($Ti_3C_2T_x$) films has a great potential for radionuclide removal from aqueous solution.

  • PDF

Layered Silicate-Polymer Nanocomposites

  • Jeong, Han-Mo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.18-18
    • /
    • 2003
  • Natural clays are composed of oxide layers whose thickness is about 1nm and cations existing between the layers. A number of these layers makes primary particles with a height of about 8∼10nm and these primary particles make aggregates with a size of about 0.1∼10$\mu\textrm{m}$. When layered silicate was made to be organophilic, by exchanging the interlayer cations with organic cationic molecules, the matrix polymer can penetrate between the layers to give a nanocomposite, where 1nm-scal clay layers exist separately in a continuous polymer matrix. These nanostructured hybrid organic-inorganic composites have attracted the great interest of researchers over the last 10 years. They exhibit improved performance properties compared with conventional composites, because their unique phase morphology by layer intercalation or exfoliation maximizes interfacial contact between the organic and inorganic phases and enhances interfacial properties. Since the advent of nylon-6/montmorillonite nanocomposite developed by Toyota Motor Co., the studies on layered silicate-polymer nanocomposites have been successfully extended to other polymer systems. They greatly improved the thermal, mechanical, barrier, and even the flame-retardant properties of the polymers.

  • PDF