• Title/Summary/Keyword: Co base super alloy

Search Result 10, Processing Time 0.029 seconds

A Study on the Surface Modification of the Super Alloy by Plasma Transferred Arc Overlay Welding Method

  • Kim, Young-Sik;Lim, Chang-Hoon;Hwang, Won-Seok;Choi, Young-Gook
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.7
    • /
    • pp.852-856
    • /
    • 2007
  • The Plasma Transferred Arc(PTA) overlay welding method is lately introduced as one of the most useful surface overlay method of the engine component. In this paper, the overlay welding method on the Nimonic super alloy was established by the PTA overlay welding process using the same super alloy powder. The characteristics of the Co-base and Ni-base super alloy overlay layers were investigated through the metallurgical, abrasive and cavitation erosion test. The abrasive and cavitation characteristics were investigated at room and high temperature.

A Study on the Characteristics of the Ni base Super Alloy Overlay Layer by Plasma Transferred Arc (PTA) Method (Ni 계 초내열합금의 PTA 오버레이 층 특성에 관한 연구)

  • Kim Young-Sik;Choi Young-Goog;Lee Kwang-Ryeol
    • Journal of Welding and Joining
    • /
    • v.24 no.3
    • /
    • pp.49-54
    • /
    • 2006
  • The Plasma Transferred Arc (PTA) overlaying method is lately introduced as one of the most useful surface modification method of the engine component. In this paper, the characteristics of the Co-base and Ni-base super alloy overlay layers by PTA method were investigated through the metallurgical, abrasive and cavitation erosion test. Experimental results showed that the abrasive wear resistance of the Co-base Stellite 6 overlayer was the most superior and followed in order of Nimonic 80A, Inconel 625 and Inconel 718. However, the cavitation erosion characteristic of the Stellite 6 overlayer was the most inferior and it was better in order of Inconel 625, Inconel 718 and Nimonic 80A.

A Study on the Abrasive Wear Properties of the PTA Overlay Layers using the Super Alloy Powder (초내열합금분말에 의한 PTA 오버레이부의 연삭 마모 특성 연구)

  • Kim, Young-Sik;Choi, Young-Gook;Lim, Chang-Hoon;Kim, Jong-Do
    • Journal of Welding and Joining
    • /
    • v.27 no.3
    • /
    • pp.80-84
    • /
    • 2009
  • The Plasma Transferred Arc (PTA) overlay welding method is lately introduced as one of the most useful surface overlay method of the engine component. In this paper, the overlay welding on the SNCrW heat resisting alloy was conducted by the PTA overlay welding process using the super alloy powder. The characteristics of the overlay layers were investigated through the metallurgical and abrasive test. Experimental results showed that the overlay on the SNCrW heat resisting alloy surface was successfully made without hot cracking. The friction wear characteristics of the Co-base Stellite 6 overlayer were most superior. However the abrasive wear characteristics were most inferior in the Co-base Stellite 6 overlayer.

SHEAR BOND STRENGTH OF HEAT-CURED DENTURE BASE RESIN TO SURFACE TREATED CO-CR ALLOY WITH DIFFERENT METHODS (코발트-크롬 합금의 표면처리에 따른 열중합형 의치상용 레진과의 전단결합강도)

  • Lee, Sang-Hoon;Hwang, Sun-Hong;Moon, Hong-Seok;Lee, Keun-Woo;Shim, June-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.2
    • /
    • pp.216-227
    • /
    • 2007
  • Statement of problem: For the long-term success of removable partial dentures, the bonding between metal framework and denture base resin is one of the important factors. To improve bonding between those, macro-mechanical retentive form that is included metal framework design has been generally used. However it has been known that sealing at the interface between metal framework and denture base resin is very weak, because this method uses mechanical bonding. Purpose: Many studies has been made to find a simple method which induces chemical bond, now various bonding system is applied to clinic. In this experiment, shear bond strengths of heat-cured denture base resin to the surface-treated Co-Cr alloy were measured before and after thermocycling. Chemically treated groups with Alloy $Primer^{TM}$, Super-Bond $C&B^{TM}$, and tribochemically treated group with $Rocatec^{TM}$ system were compared to the beadtreated control group. The data were analyzed with two-way ANOVA. Result: 1. Shear bond strength of bead-treated group is highest, and Alloy $Primer^{TM}$ treated group, Super-Bond $C&B^{TM}$ treated group, RocatecTM system treated group were followed. Statistically significant differences were found in each treated group(p<0.05). 2. Surface treatment and thermocycling affected shear bond strength(p<0.05), however there was no interaction between two factors(p>0.05). 3. Shear bond strengths of bead-treated group and Alloy $Primer^{TM}$ treated group showed no statistically significant difference before and after thermocycling(p>0.05), and those of Super-Bond $C&B^{TM}$ treated group and $Rocatec^{TM}$ system treated group showed statistically significant difference after thermocycling(p<0.05).

EFFECTS OF METAL SURFACE TREATMENTS ON THE SHEAR BOND STRENGTH BETWEEN NI-CR DENTURE BASE AND RELINE RESINS (금속 표면처리방법이 니켈-크롬 합금 의치상과 첨상레진간의 결합강도에 미치는 영향)

  • Kim Young-Il;Jeong Chang-Mo;Jeon Young-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.4
    • /
    • pp.396-405
    • /
    • 2002
  • The purpose of this study was to evaluate the effects of four metal surface treatments on the shear bond strength of reline resin to Ni-Cr alloy. The denture base metal used in this study was Ni-Cr alloy(Ticonium Premium 100. Ticonium Co., U.S.A.). 120 specimens were divided into five metal surface treatments: sandblasting only, MR. BOND(Tokuyama Corp.. Japan), Cesead Opaque Primer(Kuraray Co., Japan), METALPRIMER II(GC Corp., Japan) and Super-Bond C&B(Sun Medical Co., Japan) after sandblasting. They were bonded with one of three reline resins Mild Rebaron(GC Corp., Japan), Mild Rebaron LC(GC Corp., Japan) and Meta Base M(Sun Medical Co., Japan). Then they were thermocycled 1,000 times at temperature of $4^{\circ}C$ and $60^{\circ}C$. The shear bond strengths were measured using the universal testing machine(Instron, Model 4301, England) with a cross-head speed of 2 mm/min. The results were as follows : 1. All metal primers and adhesive cement significantly improved the bond strength of reline resin to Ni-Cr alloy compared with sandblasted specimens. 2. In Mild Rebaron and Mild Rebaron LC. Cesead Opaque Primer showed the highest bond strength, but the differences among Cesead Opaque Primer, MR. BOND and METALPRIMER II were not significant. The bond strength of Cesead Opaque Primer was significantly different with that of Super-Bond C&B. 3. In Meta Base M, Super-Bond C&B showed the highest bond strength, but there was no difference between Super-Bond C&B and three metal primers. 4. There was no difference in the bond strength between Mild Rebaron and Mild Rebaron LC when metal surface was treated with the same method. 5. The bond strengths of Mild Rebaron and Mild Rebaron LC treated with Cesead Opaque Primer were higher than that of Meta Base M. The bond strengths of Mild Rebaron treated with MR. BOND and METALPRIMER II was higher than that of Meta Base M, However, there was no difference among three reline resins treated with Super-Bond C&B.

Design of Nickel Alloys Using the Theoretical Values Calculated from the Electronic State Energies (에너지 전자상태 계산으로 도출된 이론값을 이용한 니켈 합금 설계)

  • Baek, Min-Sook;Kang, Pub-Sung;Baek, Kyeong-Cheol;Kim, Byung-Il;Yoon, Dong-Joo
    • Korean Journal of Materials Research
    • /
    • v.25 no.11
    • /
    • pp.642-646
    • /
    • 2015
  • Super alloys, which can be divided into three categories, i.e. Ni-base, Co-base, and Fe-base alloys, are widely used for high temperature applications. Since superalloys contain many alloying elements and precipitates, their chemistry and processing parameters need to be carefully designed. In this study, we designed a new Ni alloy to prevent corrosion due to water vapor and gases at high temperatures. The new alloy was designed using the theoretical value of the resulting energy electronic state calculation($DV-X{\alpha}$ method). The components that were finally used were Cr, Mo, and Ti, with Ni as a base. For these alloys, elements were selected in order to compare their values with that of the average theoretical basis for an Inconel 625 alloy. Finally, two kinds of Ni alloy were designed: Ni-28Cr-4Mo-2Ti and Ni-20Cr-10Mo-1Ti.

Low Cycle Fatigue Behavior of Cobalt-Base Superalloy ECY768 at Elevated Temperature (코발트기 초내열합금 ECY768의 고온 저주기피로 거동)

  • Yang, Ho-Young;Kim, Jae-Hoon;Ha, Jae-Suk;Yoo, Keun-Bong;Lee, Gi-Chun
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.3
    • /
    • pp.18-22
    • /
    • 2013
  • The Co-base super heat resisting alloy ECY768 is employed in gas turbine because of its high temperature strength and oxidation resistance. The prediction of fatigue life for superalloy is important for improving the efficiency. In this paper, low cycle fatigue tests are performed as variables of total strain range and temperature. The relations between strain energy density and number of cycle to failure are examined in order to predict the low cycle fatigue life of ECY768 super alloy. The lives predicted by strain energy methods are found to coincide with experimental data and results obtained from the Coffin-Manson method. The fatigue lives is evaluated using predicted by Coffin-Manson method and strain energy methods is compared with the measured fatigue lives at different temperatures. The microstructure observing was performed for how affect able to low-cycle fatigue life by increasing the temperature.

Effects of Post Weld Heat Treatment on Microstructures of Alloy 617 and 263 Welds for Turbines of HSC Power Plants (HSC발전소 터빈용 초내열합금 Alloy 617 및 263 용접부의 미세조직에 미치는 후열처리의 영향)

  • Kim, Jeong Kil;Shim, Deog Nam;Park, Hae Ji
    • Journal of Welding and Joining
    • /
    • v.34 no.3
    • /
    • pp.52-60
    • /
    • 2016
  • Recently nickel based superalloys are extensively being regarded as the materials for the steam turbine parts for hyper super critical (HSC) power plants working at the temperature over $700^{\circ}C$, since the materials have excellent strength and corrosion resistance in high temperature. In this paper, alloy 617 of solution strengthened material and alloy 263 of ${\gamma}^{\prime}$-precipitation strengthened material were prepared as the testing materials for HSC plants each other. Post weld heat treatment (PWHT) was conducted with the gas tungsten arc (GTA) welded specimens. The microstructure of the base metals and weld metals were investigated with Electron Probe Micro-Analysis (EPMA) and Scanning Transmission Electron Microscope (STEM). The experimental results revealed that Ti-Mo carbides were formed in both of the base metals and segregation of Co and Mo in both of the weld metals before PWHT and PWHT leaded to precipitation of various carbides such as Mo carbides in the specimens. Furthermore, fine ${\gamma}^{\prime}$ particles, that were not precipitated in the specimens before PWHT, were observed in base metal as well as in the weld metal of alloy 263 after PWHT.

The Mixing Ratio Effect of Insert Metal Powder and Insert Brazing Powder on Microstructure of the Region Brazed on DS Ni Base Super Alloy (일방향응고 Ni기 초내열합금 천이액상화산접합부의 미세조직에 미치는 모재와 삽입금속 분말 혼합비의 영향)

  • Ye Chang-Ho;Lee Bong-Keun;Song Woo-Young;Oh In-Seok;Kang Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.23 no.6
    • /
    • pp.99-105
    • /
    • 2005
  • The mixing ratio effect of the GTD-111(base metal) powder and the GNI-3 (Ni-l4Cr-9.5Co-3.5Al-2.5B) powder on TLP(Transient Liquid Phase) bonding phenomena and mechanism was investigated. At the mixing ratio of the base metal powder under $50wt\%$, the base metal powders fully melted at the initial time and a large amount of the base metal near the bonded interlayer was dissolved by liquid inter metal. Liquid insert metal was eliminated by isothermal solidification which was controlled by the diffusion of B into the base metal. The solid phases in the bonded interlayer grew epitaxially from the base metal near the bonded interlayer inward the insert metal during the isothermal solidification. The number of grain boundaries farmed at the bonded interlayer corresponded with those of base metal. At the mixing ratio above $60wt\%$, the base metal powder melted only at the surface of the powder and the amount of the base metal dissolution was also less at the initial time. Nuclear of solids firmed not only from the base metal near the bonded interlayer but also from the remained base metal powder in the bonded interlayer. Finally, the polycrystal in the bonded interlayer was formed when the isothermal solidification finished. When the isothermal solidification was finished, the contents of the elements in the boned interlayer were approximately equal to those of the base metal. Cr-W borides and Cr-W-Ta-Ti borides formed in the base metal near the bonded interlayer. And these borides decreased with the increasing of holding time.

A Study on the Applicability of Carbon Mold for Precision Casting of High Melting Point Metal (고융점 금속의 미소형상 정밀주조를 위한 탄소몰드의 적용성에 관한 연구)

  • Ji, Chang-Wook;Yi, Eun-Ju;Kim, Yang-Do;Rhyim, Young-Mok
    • Journal of Powder Materials
    • /
    • v.18 no.2
    • /
    • pp.141-148
    • /
    • 2011
  • Carbon material shows relatively high strength at high temperature in vacuum atmosphere and can be easily removed as CO or $CO_2$ gas in oxidation atmosphere. Using these characteristics, we have investigated the applicability of carbon mold for precision casting of high melting point metal such as nickel. Disc shape carbon mold with cylindrical pores was prepared and Ni-base super alloy (CM247LC) was used as casting material. The effects of electroless Nickel plating on wettability and cast parameters such as temperature and pressure on castability were investigated. Furthermore, the proper condition for removal of carbon mold by evaporation in oxidation atmosphere was also examined. The SEM observation of the interface between carbon mold and casting materials (CM247LC), which was infiltrated at temperature up to $1600^{\circ}C$, revealed that there was no particular product at the interface. Carbon mold was effectively eliminated by exposure in oxygen rich atmosphere at $705^{\circ}C$ for 3 hours and oxidation of casting materials was restrained during raising and lowering the temperature by using inert gas. It means that the carbon can be applicable to precision casting as mold material.