• Title/Summary/Keyword: Co/$CeO_2$

Search Result 255, Processing Time 0.029 seconds

Development of Cu-CeO2 Catalysts for Selective Oxidation of CO (일산화탄소의 선택적 산화반응을 위한 Cu-CeO2 촉매의 개발)

  • Jung, C.-R.;Han, J.;Yoon, S.P.;Nam, S.-W.;Lim, T.-H.;Hong, S.-A.;Lee, H.-I.
    • Clean Technology
    • /
    • v.8 no.1
    • /
    • pp.53-59
    • /
    • 2002
  • $Cu-CeO_2$ catalysts were prepared by co-precipitation and liquid phase oxidation (CP-LPO) and the prepared catalysts were examined as selective oxidation of carbon monoxide catalysts for the application of fuel cell vehicles. The prepared $Cu-CeO_2$ catalysts showed high reaction activity, but it was hard to find the correlation between the amount of Cu loaded and the reaction activities. As increase of the amount of Cu loaded, the micro pore structure of the catalyst was changed. It is due to the formation of solid solution between Cu and $CeO_2$. During pretreatment, the catalyst formed the solid-solution of Cu-Ce-O, resulting in the improvement of catalytic activity.

  • PDF

The Effect of Cu Loading on the Performance of Cu-Ce0.8Zr0.2O2 Catalysts for Single Stage Water Gas Shift Reaction (컴팩트 개질기용 수성가스전이 반응에서 Cu-Ce0.8Zr0.2O2 촉매에 Cu 담지량이 미치는 영향)

  • KIM, HAK-MIN;JEON, KYUNG-WON;NA, HYUN-SUK;JANG, WON-JUN;JEONG, DAE-WOON
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.4
    • /
    • pp.345-351
    • /
    • 2017
  • Single stage water-gas shift reaction has been carried out at a gas hourly space velocity of $150,494h^{-1}$ over $Cu-Ce_{0.8}Zr_{0.2}O_2$ catalysts prepared by a co-precipitation method. Cu loading was optimized to obtain highly active co-precipitated $Cu-Ce_{0.8}Zr_{0.2}O_2$ catalysts for single stage water-gas shift reaction. 80 wt.% $Cu-Ce_{0.8}Zr_{0.2}O_2$ exhibited the excellent catalytic performance as well as 100% $CO_2$ selectivity (CO conversion = 27% at $240^{\circ}C$ for 50 h). The high activity and stability of 80 wt.% $Cu-Ce_{0.8}Zr_{0.2}O_2$ are correlated to low activation energy and large amount of surface Cu atoms.

A Study on the Reaction Characteristics of Carbon Dioxide Methanation Catalyst for Full-Scale Process Application (이산화탄소 메탄화 공정 적용을 위한 Ni/CeO2-X 촉매의 반응 특성 연구)

  • Lee, Ye Hwan;Kim, Sung Su
    • Applied Chemistry for Engineering
    • /
    • v.31 no.3
    • /
    • pp.323-327
    • /
    • 2020
  • The reaction characteristics of Ni/CeO2-X which is highly efficient at a low temperature was investigated for an application to carbon dioxide methanation process. The CeO2-X support was obtained by the heat treatment of Ce(NO3)3 at 400 ℃ and the catalyst was prepared by impregnation process. The operating parameters of the experiment were the internal pressure of the reactor, the composition of oxygen, methane, and hydrogen sulfide in the inlet gas and the reaction temperature. When Ni/CeO2-X was used for the carbon dioxide methanation reaction, the CO2 conversion rate increased by more than 25% as the pressure increased from 1 to 3 bar. The increase was large at a low reaction temperature. When both oxygen and methane were in the inlet gas, the CO2 conversion rate of the catalyst decreased by up to 16 and 4%, respectively. As the concentration of oxygen and methane increased, the reduction rate of the CO2 conversion rate tended to increase. In addition, the hydrogen sulfide in the inlet gas reduced the CO2 conversion rate by up to 7% and caused catalyst deactivation. The results of this study will be useful as basic data for the carbon dioxide methanation process.

Chemical Instability of $BaCeO_3$-Based Proton Conducting Oxide ($BaCeO_3$계 프로톤 전도 산화물의 화학적 불안정성)

  • Byeon, Myeong-Seop;Kang, Eun-Tae;Cho, Woo-Seok;Kim, Jin-Ho;Hwang, Kwang-Taek
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.1
    • /
    • pp.92-99
    • /
    • 2011
  • Barium cerate ($BaCeO_3$) related perovskite ceramics currently dominate the high-temperature proton conductor field. Unfortunately, these materials have very stringent environmental limitations necessitating the costly and complex conditioning or cleaning of the application feed-gas. Commercial realization has been hampered, in part, because of the reactivity of $BaCeO_3$ with $CO_2$, and to some extent $H_2O$. And sintered $BaCeO_3$ decomposed at a rate comparable to the powder samples. In this article, the chemical stability and the structural changes of $BaCe_{0.9-X}Y0.1La_XO_{3-\delta}$ (X=0, 0.1, 0.2) have been systematically investigated in the atmosphere containing carbon dioxide ($CO_2$) and water vapor ($H_2O$). The sintering characteristics were studied in $1600^{\circ}C$, sintered pellets disintegrate and decompose upon contacting boiling water on the surface only.

Effects of Gallia Additions on Sintering Behavior of 상용분말로 제조된 $Ce_{0.8}Gd_{0.2}O_{2-\delta}$ Ceramics Prepared by Commercial Powders (상용분말로 제조된 $Ce_{0.8}Gd_{0.2}O_{2-\delta}$ 세라믹스의 소결성에 미치는 $Ga_2O_3$의 첨가효과)

  • 최광훈;박혜영;이주신;류봉기
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.113-113
    • /
    • 2003
  • 고체전해질체로 사용되는 산소이온전도체로는 $Y_2$O$_3$ 안정화 ZrO$_2$가 널리 연구되어 왔고, 실질적으로 많이 사용되고 있다. 그러나 특히 대전력을 얻고자 하는 고체전해질 연료전지 분야에 있어서는 다른 재료를 찾고자 하는 많은 노력이 이루어지고 있다. 이에 CeO$_2$계 세라믹스는 ZrO$_2$계보다 낮은 온도에서 더 높은 이온전도도를 가지고 있어 많은 주목을 받고 있다. 그러나 이 CeO$_2$계를 소결시키는 데는 1$600^{\circ}C$이상의 고온을 필요로 한다. 이 런 고온의 소결온도를 낮추기 위한 방안으로는 균일하고 미세한 출발원료를 사용하거나 소결조제를 첨가하는 것 등이 있다. 균일하고 미세한 출발원료를 제조하는 연구는 국내외에서 많이 이루어지고 있으나 소결조제 첨가에 대한 연구는 별로 이루어진게 없다. 다만 국외에서 Co$_3$O$_4$, Fe$_2$O$_3$, CoO 첨가에 의한 연구가 최근에 이루어지고 있으며, 본 연구실을 중심으로 Ga$_2$O$_3$, $Al_2$O$_3$ 첨가에 대한 연구가 이루어지고 있다. 본 연구실에서는 그간 공침법으로 제조되는 소결조제 첨가 Gd$_2$O$_3$-doped CeO$_2$ 분말을 사용하여 소결조제 첨가효과를 살펴보았다.

  • PDF

Evaluation in Activity of Pt-Na/$CeO_2$ Catalysts for One-Step Water Gas Shift Reaction via Controlling the Amount of Na Addition (WGS 반응용 Pt-Na/$CeO_2$촉매의 Na 담지량에 따른 성능 평가)

  • Eum, Ic-Hwan;Kim, Ki-Sun;Jeong, Dae-Woon;Lee, Sung-Hun;Koo, Kee Young;Yoon, Wang Lai;Roh, Hyun-Seog
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.230.1-230.1
    • /
    • 2010
  • 조촉매(Promotor)인 Na은 수성가스전이(Water Gas Shift, WGS) 반응 시 생성된 포름산염의 C-H결합을 쉽게 분해하는 역할을 한다. 본 연구에서는 $Pt/CeO_2$ 촉매의 성능 향상을 위해 Na의 담지량을 변화시켜 촉매적 활성을 비교하여 보았다. 제조된 담체는 침전법(Precipitation)을 사용하여 제조하였으며 $500^{\circ}C$에서 6시간 소성하였다. Pt 담지량은 1wt%로 고정하였고 Na 담지량은 1 wt%~5 wt%로 변화를 주어 동시(공)-함침법(Co-incipient wetness method)으로 담지 시켰다. 반응 실험은 공간속도(Gas Hourly Space Velocity, GHSV) $45,385h^{-1}$에서 수행하였다. WGS 반응 결과 3 wt%의 Na이 담지된 $Pt/CeO_2$ 촉매의 경우를 제외하고 나머지 Na이 담지된 촉매들은 비교적 높은 CO의 전환율을 나타내었다. 특히 2 wt%의 Na이 담지된 $Pt/CeO_2$ 촉매는 가장 높은 CO의 전환율을 나타내었다. 따라서 Na 담지량의 변화가 포름산염의 C-H결합 분해에 영향을 미친다는 것을 알 수 있다.

  • PDF

A Study on Catalysts for Simultaneous Removal of 1,2-Dichlorobenzene and NOx (1,2-Dichlorobenzene 및 질소산화물 동시제거를 위한 촉매연구)

  • Park, Kwang Hee;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.20 no.5
    • /
    • pp.522-526
    • /
    • 2009
  • The catalytic oxidation of 1,2-dichloribenzene (1,2-DCB) and simultaneous catalytic reduction of nitrogen oxides over the single catalyst has been investigated over various metals (Ru, Mn, Co and Fe) supported on $Al_2O_3$ and $CeO_{2}$. The activity of the different catalysts for catalytic oxidation of 1,2-dichloribenzene depended on the used metal, Ru/Co/$Al_2O_3$, Mn-Fe/CeO2 and Cr/$Al_2O_3$ (commercial catalysts) being the most actives ones. In the catalytic oxidation of chlorobenzene (CB), Ru/Co/$Al_2O_3$ is better than Pt-Pd/$Al_2O_3$, which is the well-known catalyst good for VOC oxidation. Furthermore, it has a good durability on the deactivation by $Cl_2$ and sulfur. For nitrogen oxides (NOx) removal, NOx conversion was 70% at $260^{\circ}C$.

Manufacturing Optimization of Ni Based Disk Type Catalyst for CO2 Methanation (CO2 메탄화 반응을 위한 Ni 기반 Disk Type 촉매의 제조 최적화에 관한 연구)

  • Lee, Jae-Joung;Moon, Dea-Hyun;Chang, Soon-Wong
    • Journal of Environmental Science International
    • /
    • v.28 no.1
    • /
    • pp.65-73
    • /
    • 2019
  • The catalytic activity of Ni-0.2%YSZ (Yttria-Stabilized Zirconia) with different promoters was evaluated for $CO_2$ methanation. The catalysts were weighed for mixing and they were dried at $110^{\circ}C$ for molding into disks. The concentration of $CO_2$ and $CH_4$ for conducting of $CO_2$ methanation were analyzed by gas chromatography and the physical characteristics of the disk-type catalyst formed were analyzed by X-ray diffraction, scanning electron microscope and energy dispersive x-ray spectrometer. The addition of $CeO_2$ as a promoter for Ni-0.2%YSZ (denoted as Ni-5%Ce-0.2%YSZ) resulted in the highest $CO_2$ methanation. It also showed catalytic activity at a low temperature($200^{\circ}C$). Following this, $ZrO_2$, $SiO_2$, $Al_2O_3$ and $TiO_2$ were added to Ni-5%Ce-0.2%YSZ to compare the $CO_2$ methanation, and the highest efficiency was found for. Ni-1%Ti-5%Ce-0.2%YSZ Then, the concentration of Ti was increased to 10% and the catalytic activity was estimated using seven different types of commercial $TiO_2$. In conclusion, ST-01 $TiO_2$ showed the highest efficiency for $CO_2$ methanation.

A Study on Cu Based Catalysts for Water Gas Shift Reaction to Produce Hydrogen from Waste-Derived Synthesis Gas (폐기물 가스화 합성가스로부터 수소 생산을 위한 수성가스전이 반응용 Cu 기반 촉매 연구)

  • Na, Hyun-Suk;Jeong, Dae-Woon;Jang, Won-Jun;Lee, Yeol-Lim;Roh, Hyun-Seog
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.3
    • /
    • pp.227-233
    • /
    • 2014
  • Simulated waste-derived synthesis gas has been tested for hydrogen production through water-gas shift (WGS) reaction over supported Cu catalysts prepared by co-precipitation method. $CeO_2$, $ZrO_2$, MgO, and $Al_2O_3$ were employed as supports for WGS reaction in this study. $Cu-CeO_2$ catalyst exhibited excellent catalytic activity as well as 100% $CO_2$ selectivity for WGS in severe conditions ($GHSV=40,206h^{-1}$ and CO concentration = 38.0%). In addition, $Cu-CeO_2$ catalyst showed stable CO conversion for 20h without detectable catalyst deactivation. The high activity and stability of $Cu-CeO_2$ catalyst are correlated to its easier reducibility, high oxygen mobility/storage capacity of $CeO_2$.

Enhanced Catalytic Activity of Cu/Zn Catalyst by Ce Addition for Low Temperature Water Gas Shift Reaction (Ce 첨가에 따른 저온수성가스전이반응용 Cu/Zn 촉매의 활성 연구)

  • Byun, Chang Ki;Im, Hyo Bin;Park, Jihye;Baek, Jeonghun;Jeong, Jeongmin;Yoon, Wang Ria;Yi, Kwang Bok
    • Clean Technology
    • /
    • v.21 no.3
    • /
    • pp.200-206
    • /
    • 2015
  • In order to investigate the effect of cerium oxide addition, Cu-ZnO-CeO2 catalysts were prepared using co-precipitation method for water gas shift (WGS) reaction. A series of Cu-ZnO-CeO2 catalyst with fixed Cu Content (50 wt%, calculated as CuO) and a given ceria content (e.g., 0, 5, 10, 20, 30, 40 wt%, calculated as CeO2) were tested for catalytic activity at a GHSV of 95,541 h-1, and a temperature range of 200 to 400 ℃. Cu-ZnO-CeO2 catalysts were characterized by using BET, SEM, XRD, H2-TPR, and XPS analysis. Varying composition of Cu-ZnO-CeO2 catlysts led the difference characteristics such as Cu dispersion, and binding energy. The optimum 10 wt% doping of cerium facilitated catalyst reduction at lower temperature and improved the catalyst performance greatly in terms of CO conversion. Cerium oxide added catalyst showed enhanced activities at higher temperature when it compared with the catalyst without cerium oxide. Consequently, ceria addition of optimal composition leads to enhanced catalytic activity which is attributed to enhanced Cu dispersion, lower binding energy, and hindered Cu metal agglomeration.