• Title/Summary/Keyword: Co(II) complex

Search Result 184, Processing Time 0.024 seconds

Molecular Oxygen in Solid State of Polymeric Tetraphenylporphinatocobalt(II) (고분자로 지지된 코발트(II) 테트라페닐포피린 화합물에서의 산소분자에 관한 연구)

  • Chae Hee Kwon;Chong Soo Han;Hakze Chon
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.2
    • /
    • pp.114-120
    • /
    • 1984
  • The reversible oxygenation of a solid stae polymeric cobalt(II) porphyrin complex, PVP-CoTPP was studied at 0, -24 and $-78^{\circ}C$. When PVP-CoTPP was contacted with $O_2 $at$-78^{\circ}C$ the oxygen uptake increased with oxygen partial pressure. At about 700mmHg $O_2$, the amount of oxygen taken up corresponded approximately one oxygen molecule to one Co(II) complex. The amount of $O_2$ taken up by PVP-CoTPP decreased with increasing temperature. When $16O_2$ was admitted to the Co(II) complex a EPR signal corresponding to $O_2^-$ increased with a decrease in Co(II) signal. The results suggest that an electron is transfered from Co(II) in PVP-CoTPP to oxygen forming a $Co(III)-O_2^-$ complex where $O_2^- $is superoxide type.

  • PDF

Complexation of Polyelectroyte-Metal(II) Ion. III. The Complex Formation of Iron(II), Cobalt(II), Nickel(II) and Copper(II) with Branched Poly(ethylene imine) (BPEI) in Aqueous Solution (Polyelectrolyte-Metal(II) 이온의 착물화 (제 3 보). Iron(II), Cobalt(II) Nickel(II) 및 Copper(II)와 Branched Poly(ethylene imine) (BPEI)간의 착물생성)

  • Dong Soo Kim;Tae Sub Cho
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.456-464
    • /
    • 1986
  • The complex formation of branched poly(ethylene imine) (BPEI) with bivalent transition metal ions, such as Fe(II), Co(II), Ni(II) and Cu(II), have been investigated in terms of visible absorption and pH titration methods in an aqueous solution in 0.1M KCl at 30${\circ}$. The stability constants for M(II)-BPEI complexes was calculated with the modified Bjerrum method. The formation curves of M(II)-BPEI complexes showed that Fe(II), Co(II), Ni(II) and Cu(II) ions formed coordination compounds with four, two, two, and two ethylene imine group, respectively. In the case of Cu(II)-BPEI complex at pH 3.4 ∼ 3.8, ${\lambda}_{max}$ was shifted to the red region with a decrease in the acidity. The overall stability constants (log $K_2$) increased as the following order, Co(II) < Cu(II) < Ni(II) < Fe(II).

  • PDF

Studies on Metal Complex Formation of Poly (styrene-co-Acrylic acid) (스틸렌-아크릴산계 공중합체의 금속착물 형성에 관한 연구)

  • Kim, Kong-Soo;Kim, Soo-Jong;Cho, Suk-Hyeong;Chun, Yong-Chul
    • Applied Chemistry for Engineering
    • /
    • v.2 no.1
    • /
    • pp.70-76
    • /
    • 1991
  • Water soluble poly(sulfonated styrene-co-acrylic acid) was polymerized with sulfonated styrene and acrylic acid in the presence of silver sulfate at $99^{\circ}C$ for 4 hrs. The complex formation of poly(sulfonated styrene-co-acrylic acid) with Cu(II) was carried out. The maximum absorption wavelength of the poly(sulfonated styrene-co-acrylic)-Cu(II) system at different pH values was observed at 274 nm and 295 nm. The reduced viscosity of the poly(sulfonated styrene-co-acrylic acid)-Cu(II) complex were measured in the various pH ranges. The formation constants and stability constants of poly(sulfonated styrene-co-acrylic acid)-Cu(II) complex were calculated from Bjerrum method. The changes of enthalpy, free energy and entropy in the above reaction were determined by Ringbom method.

  • PDF

Effects of Quinolone Derivatives on Topoisomerase II (퀴놀론 유도체의 Topoisomerase II에 대한 효과)

  • Yeon, Seung-Woo;Paek, Nam-Soo;Kim, Tae-Han;Kim, Kee-Won
    • YAKHAK HOEJI
    • /
    • v.40 no.6
    • /
    • pp.697-704
    • /
    • 1996
  • Quinolone derivatives, SJ5b (ethyl 5,12-dihydro-5-dihydro-5-oxobenzoxazolo[3,2-a]quinoline-6-carboxylate) and SQ7b (3-fluoro-2-(4-methylpiperazin-1-yl)-5.12-dihydro-5-oxobenzoxa zolo[3,2-a]quinoloine carboxylic acid) showed in vitro cytotoxicities against various tumor cell lines. SJ5b and SQ7b completely inhibited the DNA relaxation activities of human placental topoisomerase II at the concentration of 15.63 and 1.95 ${\mu}$g/ml, respectively. However, unlike etoposide which stabilize the topoisomerase II-DNA complex, SQ7b did not cause topoisomerase II-mediated DNA cleavage and SJ5b weakly stabilized the topoisomerase II-DNA cleavable complex. Through both experiments. DNA relaxation assay by the increment of topoisomerase II concentration and DNA unwinding assay, it was shown that SJ5b and SQ7b did not interact with topoisomerase II itself but bound to DNA. Therefore, it was concluded that DNA binding of SJ5b and SQ7b caused the inhibition of topoisomerase II related to DNA relaxation but no or very weak stabilization of topoisomerase II-DNA cleavable complex. In addition, SJ5b and SQ7b prevented whole cell nucleic acid syntheses in HL60 cells.

  • PDF

Direct and Derivative Spectrophotometric Determination of Cobalt (II) in Microgram Quantities with 2-Hydroxy-3-methoxy Benzaldehyde Thiosemicarbazone (2-Hydroxy-3-methoxy Benzaldehyde Thiosemicarbazone를 사용하여 마이크로 그램 코발트(II)의 직접 및 유도 분광광도법에 의한 정량)

  • Kumar, A.Praveen;Reddy, P.Raveendra;Reddy, V.Krishna
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.4
    • /
    • pp.331-338
    • /
    • 2007
  • A rapid, simple and sensitive spectrophotometric method was developed for the determination of cobalt(II) using 2-hydroxy-3-methoxy benzaldehyde thiosemicarbazone (HMBATSC) as a analytical reagent. The metal ion in aqueous medium forms a brown coloured complex with HMBATSC at pH 6.0. The complex has two absorption maxima at 375 nm and 390 nm. At 375 nm, the reagent shows considerable absorbance, while at 390 nm the reagent does not shows appreciable absorbance. Hence, analytical studies were carried out at 390 nm. Beer's law is obeyed in the range of 0.059-2.357 μg ml-1 of Co(II). The molar absorptivity and Sandall's sensitivity of the method are 2.74×104 l mol-1 cm-1 and 0.0024 μg cm-2 respectively. The interference of various diverse ions has been studied. The complex has 1:2 [Co(II)- HMBATSC] stoichiometry. A method for the determination of cobalt(II) by second order derivative spectrophotometry has also been proposed. The proposed methods were applied for the determination of cobalt(II) in alloy steels, vitamin B12 and in some biological samples.

Complex Formation of 1,15-Diaza-3,4:12,13-dibenzo-5,8,11-trioxacycloheptadecane with Some Transition Metal Ions (전이금속이온과 1,15-Diaza-3,4:12,13-dibenzo-5,8,11-trioxacycloheptadecane과의 착물형성)

  • Cheul-Gyu Chang;Young-Kook Shin;Si-Joong Kim
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.6
    • /
    • pp.526-531
    • /
    • 1986
  • The stability constants of 1,15-diaza-3,4:12,13-dibenzo-5,8,11-trioxacycloheptadecane (NenOdien H$_4$, L) with transition metal ions such as $Co^{2+},\;Ni^{2+},\;Cu^{2+},\;and\;Zn^{2+}$ have been determined by potentiometry in 95% methanol solution at 25$^{\circ}$C. The complex formation of the NenOdien $_4$ with the transition metal ions depends on the basicity of the donor atoms. The order of complex stability was Co(II) < Ni(II) < Cu(II) > Zn(II). The geometries of the complexes in solid state were discussed by visible-near infrared and infrared spectrophotometry, elemental analysis and electro-conductivity. The results suggest that the geometries of the solid complexes are octahedral for $[CoL_2(OH_2)Cl]Cl{\cdot}2H_2O$, $[NiL_2(OH_2)Cl]Cl{\cdot}2H_2O$, and $[ZnLCl_2]{\cdot}\frac{1}{2}H_2O$ and square pyramidal for [CuLCl]Cl, respectively.

  • PDF

Preparation and Oxygen Binding Properties of Ultra-Thin Polymer Films Containing Cobalt(II) meso-Tetraphenylporphyrin via Plasma Polymerization

  • Choe, Youngson
    • Macromolecular Research
    • /
    • v.10 no.5
    • /
    • pp.273-277
    • /
    • 2002
  • Ultra-thin polymer films containing cobalt(II) meso-tetraphenylporphyrin(CoTPP) have been prepared by vacuum codeposition of the metal complex and trans-2-butene as an organic monomer using an inductively coupled RF glow discharge operating at 7-9 Watts. The polymer films were characterized by sorption measurements. Sorption data obtained for polymer films containing CoTPP indicate that the CoTPP molecules are capable of reversibly binding oxygen molecules. It was found that the adjacent CoTPP molecules in the aggregated metal complex phase could irreversibly share the oxygen molecules. A dispersion of the metal complex molecules in the polymer matrix was made to maintain the reversible reactivity of the metal complex molecules with oxygen in the polymer films via vacuum evaporation process. The Henry mode solubility constant, the Langmuir mode capacity constant, the amount of binding oxygen, and the dissociation equilibrium in the dual mode sorption theory were discussed.

Electrochemical and Spectroelectrochemical Studies of Cobalt Salen and Salophen as Oxygen Reduction Catalysts

  • Bertha Ortiz;Park, Su Mun
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.4
    • /
    • pp.405-411
    • /
    • 2000
  • Electrochemical and spectroelectrochemical studies of cobalt-Schiff (Co-SB) base complexes, Co(salen) [N-N'-bis(salicylaldehyde)-ethylenediimino cobalt(II)] and Co(salophen) [N-N'-bis(salicylaldehyde)-1,2-pheny-lenediimino cobalt(II)], have been c arried out to test them as oxygen reduction catalysts. Both compounds were found to form an adduct with oxygen and exhibit catalytic activities for oxygen reduction. Comparison of spec-tra obtained from electrooxidized complexes with those from Co-SB complexes equilibrated with oxygen in-dicates that the latter are consistent with the postulated complex formed with oxygen occupying the coaxial ligand position, namely, Co(III)-SB·O2 - .The catalysis of oxygen reduction is thus achieved by reducing Co(III) in the oxygen-Co-SB adduct, releasing the oxygen reduction product, e.g., O2 - ., from the Co(II)-SB complex.