• Title/Summary/Keyword: CnrX

Search Result 61, Processing Time 0.028 seconds

Expression, Purification, Crystallization and Preliminary X-Ray Crystallographic Analysis of CnrX from Cupriavidus metallidurans CH34

  • Kim, Kook-Han;Jung, Eun-Jung;Im, Ha-Na;Lelie, Daniel Van Der;Kim, Eunice Eun-Kyeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.43-47
    • /
    • 2008
  • The nickel and cobalt resistance of Cupriavidus metallidurans CH34 is mediated by the CnrCBA efflux pump encoded by the cnrYHXCBAT metal resistance determinant. The products of the three genes cnrYXH transcriptionally regulate expression of cnr. CnrY and CnrX are membrane-bound proteins, probably functioning as anti-sigma factors, whereas CnrH is a cnr-specific extracytoplasmic functions (ECF) sigma factor. The periplasmic domain of CnrX (residues 29-148) was cloned as a N-terminal His-tagged protein, expressed in Escherichia coli, and purified using affinity chromatography and gel filtration. The molecular mass was estimated to be about 13.6kDa by size exclusion chromatography, corresponding to a monomer. The tetragonal bipyramid crystals were obtained by mixing an equal volume of protein in 50mM Tris-HCl, pH 7.5, 1% glycerol, 100mM NaCl, 1mM DTT, and the reservoir solution of 15% w/v PEG 2000, 100mM lithium chloride at 277K in 2-4 days using hanging drop vapor diffusion. The protein concentration was 24mg/ml. The crystal that diffracted to $2.42{\AA}$ resolution belongs to space group $P4_1\;or\;P4_3$ with unit cell parameters of $a=b=32.14{\AA},\;c=195.31{\AA},\;{\alpha}={\beta}={\gamma}=90^{\circ}$, with one molecule of CnrX in the asymmetric unit.

Evaluation of Image Quality according to the Use of Attachable X-ray Table Equipped with Heating Device (가열장치를 구비한 부착형 X선 촬영대의 사용에 따른 화질 평가)

  • Song, Jongnam;Kim, Eungkon
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.4
    • /
    • pp.219-225
    • /
    • 2015
  • This study aims to evaluates the image quality of CR and DR that are scanned with the use of the attachable carbon heater X-ray scanner table equipped with heating device by measuring SNR and CNR before and after the attachment of the said table. In the aluminum staircase testing, CR increased SNR and CNR when attached with the table, while DR decreased SNR and CNR. In the human-body model phantom testing, CR increased SNR and CNR only in the low-energy low-dose radiation and the high-energy high-dose radiation, but decreased SNR and CNR under all other conditions. In conclusion, the use of such table can make the patient feel comfortable by removing his or her anxiety, thus helping the testing, but in the actual clinical application thereof, if the thickness and material of the bottom film and the protective film, including the carbon heater, are not considered, it affects the picture quality, thereby requiring continuous research on the use of such table.

A Study on Feasibility of Total Variation Algorithm in Skull Image using Various X-ray Exposure Parameters (다양한 X-ray 촬영조건을 이용하여 획득한 skull 영상에서의 Total Variation 알고리즘의 가능성 연구)

  • Park, Sung-Woo;Lee, Jong-In;Lee, Youngjin
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.765-771
    • /
    • 2019
  • Noise in skull X-ray imaging is inevitable, which reduces imaging quality and diagnostic accuracy and increases errors due to the nature of digital imaging devices. Increasing the dose can attenuate noise, but that could lead to big problems with higher exposure dose received by patients. Thus, noise reduction algorithms are actively being studied at low doses to solve dose problems and reduce noise at the same time. Wiener filter and median filter have been widely used, with the disadvantages of poor noise reduction efficiency and loss of much information about imaging boundary. The purpose of this study is to apply total variation (TV) algorithm to skull X-ray imaging that can compensate for the problems of previous noise reduction efficiency to assess quantitatively and compare them. For this study, skull X-ray imaging is obtained using various kVp and mAs using the skull phantom using the X-ray device of Siemens. In addition, contrast to noise ratio (CNR) and coefficient of variation (COV) are compared and measured when noisy image, median filter, Wiener filter and TV algorithm were applied to each phantom imaging. Experiments showed that when TV algorithms were applied, CNR and COV characteristics were excellent under all conditions. In conclusion, we've been able to see if we can use TV algorithm to improve image quality and CNR could be seen to increase due to the decrease in noise as the amount of increased mAs. On the other hand, COV decreased as the amount of increased mAs, and when kVp increased, noise was reduced and the transmittance was increased, so COV was reduced.

Application of Total Variation Algorithm in X-ray Phantom Image with Various Added Filter Thickness : GATE Simulation Study (다양한 두께의 부가 여과판을 적용한 X-선 영상에서의 Total Variation 알고리즘 적용 : GATE 시뮬레이션 연구)

  • Park, Taeil;Jang, Sujong;Lee, Youngjin
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.773-778
    • /
    • 2019
  • Images using X-rays are essential to diagnosis, but noise is inevitable in the image. To compensate for this, a total variation (TV) algorithm was presented to reduce the patient's exposure dose while increasing the quality of the images. The purpose of this study is to verify the effect on the image quality in radiographic imaging according to the thickness of the additional filtration plate through simulation, and to evaluate the usefulness of the TV algorithm. By using the Geant4 Application for Tomographic Emissions (GATE) simulation image, the actual size, shape and material of the Polymethylmethacrylate (PMMA) phantom were identical, the contrast to noise ratio (CNR) and coefficient of variation (COV) were compared. The results showed that the CNR value was the highest and the COV the lowest when applying the TV algorithm. In addition, we can acquire superior CNR and COV results with 0 mm Al in all algorithm cases.

Analysis of the Relationships Between ESD and DAP, and Image SNR·CNR According to the Frame Change of Cine Imaging in CAG : With Focus on 10 f/s and 15 f/s (심장혈관 조영술에서 씨네(cine)촬영의 프레임변화에 따른 ESD와 DAP 및 영상의 SNR·CNR 관계 분석: 10f/s과 15f/s을 중심으로)

  • Jung, Myo-Young;Seo, Young-Hyun;Song, Jong-Nam;Han, Jae-Bok
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.5
    • /
    • pp.669-675
    • /
    • 2018
  • This study aimed to investigate the difference of X-ray exposure by comparing and analyzing entrance surface dose and absorbed dose according to the frame change in coronary angiography using an X-ray machine. Moreover, appropriate frame selection measures for examination, including the effect of frame change on the image quality, were sought by measuring and analyzing the SNR and CNR of the image through image J. The study was conducted on 30 patients (19 males and 11 females) who underwent CAG at this hospital from June 2017 to October 2017. In regard to the patients, their age range was 49-82 years (mean of $65{\pm}9$ years), body weight was 45-91 kg (mean of $67{\pm}8.9kg$), height was 150-179cm (mean of $165.1{\pm}8.9kg$), and BMI was 19.5-30.5(mean of $24.5{\pm}2.9$). For the entrance surface dose and absorbed dose, air kerma value and DAP were obtained and analyzed retrospectively. The SNR and CNR were measured and analyzed through imageJ, and the result values were derived by applying the values to the formula. As for the statistical analyses, the correlations between the entrance surface dose and absorbed dose, and between the SNR and CNR were analyzed by using the SPSS statistical program. The relationship between the entrance surface dose and absorbed dose was not statistically significant for both 10 f/s and 15 f/s (p>0.05). In terms of the relationship between the SNR and CNR, the SNR ($3.374{\pm}2.1297$) and CNR ($0.234{\pm}0.2249$) in 10 f/s were $1.43{\pm}0.4861$ and $0.132{\pm}0.0555$ lower, respectively, than the SNR ($4.929{\pm}2.8532$) and CNR ($0.391{\pm}0.3025$) in 15 f/s, which were not statistically significant (p>0.05). In the correlation analysis, statistically significant results were obtained among the BMI, air kerma, and DAP; between air kerma and DAP; and between SNR and CNR (p<0.001, p<0.001). In conclusion, there was no significant difference between the entrance surface dose and absorbed dose even when the images were taken by changing the frame from 10 f/s to 15 f/s at the time of the coronary angiography. SNR and CNR increased at 15 f/s than at 10 f/s, but they were not statistically significant. Therefore, this study suggests that the concern of the patient and practitioner regarding image quality degradation, as well as the problem of X-ray exposure caused by imaging at 10 f/s and 15 f/s, may be reduced.

Influence of Processing on Morphology, Electrical Conductivity and Flexural Properties of Exfoliated Graphite Nanoplatelets-Polyamide Nanocomposites

  • Liu, Wanjun;Do, In-Hwan;Fukushima, Hiroyuki;Drzal, Lawrence T.
    • Carbon letters
    • /
    • v.11 no.4
    • /
    • pp.279-284
    • /
    • 2010
  • Graphene is one of the most promising materials for many applications. It can be used in a variety of applications not only as a reinforcement material for polymer to obtain a combination of desirable mechanical, electrical, thermal, and barrier properties in the resulting nanocomposite but also as a component in energy storage, fuel cells, solar cells, sensors, and batteries. Recent research at Michigan State University has shown that it is possible to exfoliate natural graphite into graphite nanoplatelets composed entirely of stacks of graphene. The size of the platelets can be controlled from less than 10 nm in thickness and diameters of any size from sub-micron to 15 microns or greater. In this study we have investigated the influence of melt compounding processing on the physical properties of a polyamide 6 (PA6) nanocomposite reinforced with exfoliated graphite nanoplatelets (xGnP). The morphology, electrical conductivity, and mechanical properties of xGnP-PA6 nanocomposite were characterized with electrical microscopy, X-ray diffraction, AC impedance, and mechanical properties. It was found that counter rotation (CNR) twins crew processed xGnP/PA6 nanocomposite had similar mechanical properties with co-rotation (CoR) twin screw processed or with CoR conducted with a screw design modified for nanoparticles (MCoR). Microscopy showed that the CNR processed nanocomposite had better xGnP dispersion than the (CoR) twin screw processed and modified screw (MCoR) processed ones. It was also found that the CNR processed nanocomposite at a given xGnP content showed the lowest graphite X-ray diffraction peak at $26.5^{\circ}$ indicating better xGnP dispersion in the nanocomposite. In addition, it was also found that the electrical conductivity of the CNR processed 12 wt.% xGnP-PA6 nanocomposite is more than ten times higher than the CoR and MCoR processed ones. These results indicate that better dispersion of an xGnP-PA6 nanocomposite is attainable in CNR twins crew processing than conventional CoR processing.

A Study on the Usefulness of VGR (Virtual Grid Role) Algorithm for Elevation of Image Quality in DR System (DR 시스템에서 화질 개선을 위한 VGR 알고리즘의 유용성에 관한 연구)

  • Yang, Hyun-Jin;Han, Dong-Kyoon
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.6
    • /
    • pp.763-772
    • /
    • 2020
  • During X-ray examinations in the DR system, the scattered X-rays physically generated by the patient cause image blurring in poor quality. Although X-rays to increase the contrast of images, this increases the patient's exposure dose and is likely to result in grid induced artifacts. Therefore, the purpose of this study is obtain images similar to those of real-grid with non-grid level conditions using a VGR (Virtual Grid Role) algorithm that serves as a virtual grid. Comparing MTF, SNR and CNR of non-grid and VGR algorithm images obtained with 70% exposure conditions of real-grid images showed that the MTF0.5 differed from 0.265 to 0.350 and the MTF0.1 from 0.412 to 0.467 and the SNR, CNR were also different. In addition, comparing MTF, SNR and CNR of VGR algorithm and real-grid images showed that the MTF0.5 differed from 0.350 to 0.367 and the MTF0.1 from 0.467 to 0.483 and the SNR, CNR by little.

Evaluation of Virtual Grid Software (VGS) Image Quality for Variation of kVp and mAs (관전압과 관전류량 변화에 대한 가상 그리드 소프트웨어(VGS) 화질평가)

  • Chang-gi Kong
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.5
    • /
    • pp.725-733
    • /
    • 2023
  • The purpose of this study is to evaluate the effectiveness of virtual grid software (VGS). The purpose of this study is to evaluate the changes in energy and object thickness by dividing the use of VGS into two cases (Without-VGS) without using a movable grid. We attempted to determine the effectiveness of VGS by acquiring images using a chest phantom and a thigh phantom and analyzing SNR and CNR. In the chest phantom and femoral phantom, the tube flow was fixed at 2.5 mAs, and the tube voltage was changed by 10 kVp from 60 to 100 kVp to measure SNR and CNR, and SNR was about 1.09 to 8.86% higher in the chest phantom than in Without-VGS, and CNR was 4.18 to 14.56% higher in the VGS than in Without-VGS. And in the femoral phantom, SNR was about 9.78 to 18.05% higher in VGS than in Without-VGS, and CNR was 21.07 to 44.44% higher in VGS than in Without-VGS. The tube voltage was fixed at 70 kVp in the chest phantom and the femoral phantom, and the amount of tube current was changed at 2.5 to 16 mAs, respectively, and after X-ray irradiation, SNR and CNR were measured in the chest phantom, which was about 1.49 to 11.11% higher in VGS than in Without-VGS, and CNR was 4.76 to 13.40% higher in VGS than in Without-VGS. And in the femoral phantom, SNR was about 2.22 to 17.38% higher in VGS than in Without-VGS, and CNR was 13.85 to 40.46% higher in VGS than in Without-VGS. Therefore, if an inspection is required with a mobile X-ray imaging device, it is believed that good image quality can be obtained by using VGS in an environment where it is difficult to use a mobile grid, and it is believed that the use of mobile X-ray devices can be increased.

Usefulness of Carbon Fiber Reinforced Plastics as a Material of Auxiliary Tool for X-ray Imaging (엑스선 촬영 시 보조도구 재료로써 탄소 섬유 강화 플라스틱의 유용성)

  • Joon-Ho Moon;Bon-Yeoul Koo
    • Journal of radiological science and technology
    • /
    • v.46 no.3
    • /
    • pp.197-205
    • /
    • 2023
  • When taking X-rays, various auxiliary tools were used to fix a patient's exact shooting position and posture. In this study, we evaluated the usefulness of carbon fiber reinforced plastics(CFRP) 3K as a material of auxiliary tools by comparing poly methyl metha acrylate(PMMA), polycarbonate(PC), and CFRP 3K each of which has high radiolucency. X-ray radiolucencies were measured by stacking 1 mm panels of each material, and contrast to noise ratio(CNR) and signal to noise ratio(SNR) of images of each material were measured by comparing with None, which stands for images that are taken without any material. All three materials showed over 90% X-ray radiolucencies within 2 ㎜ thickness, and there was no significant difference. PC, PMMA and CFRP 3K had high CNR and SNR in order, and CFRP 3K showed the closest CNR and SNR to those of None. While taking X-rays, by using CFRP 3K material within 2 ㎜ thickness as a material of auxiliary tools, which are used to reduce re-shooting and X-ray exposure by fixing a patient's exact shooting position and posture and improve the quality of medical images, a high X-ray radiolucency of over 90% would be obtained, and the influence on the image could be minimized.

X-ray Absorptiometry Image Enhancement using Sparse Representation (Sparse 표현을 이용한 X선 흡수 영상 개선)

  • Kim, Hyungil;Eom, Wonyong;Ro, Yong Man
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.10
    • /
    • pp.1205-1211
    • /
    • 2012
  • Recently, the evaluating method of the bone mineral density (BMD) in X-ray absorptiometry image has been studied for the early diagnosis of osteoporosis which is known as a metabolic disease. The BMD, in general, is evaluated by calculating pixel intensity in the bone segmented regions. Accurate bone region extraction is extremely crucial for the BMD evaluation. So, a X-Ray image enhancement is needed to get precise bone segmentation. In this paper, we propose an image enhancement method of X-ray image having multiple noise based sparse representation. To evaluate the performance of proposed method, we employ the contrast to noise ratio (CNR) metric and cut-view graphs visualizing image enhancement performance. Experimental results show that the proposed method outperforms the BayesShrink noise reduction methods and the previous noise reduction method in sparse representation with general noise model.