• Title/Summary/Keyword: CmDLC

Search Result 28, Processing Time 0.025 seconds

Development of surface treatment materials for improving durability of metallic bipolar plates in PEMFC (연료전지용 금속분리판 내구성 향상을 위한 표면처리기술 개발)

  • Kim, Myong-Hwan;Goo, Young-Mo;Yoo, Seung-Eul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.41-44
    • /
    • 2008
  • 본 연구에서는 고분자 전해질 연료전지용 금속분리판의 전기화학적 부식을 방지하기 위한 금속 첨가 DLC(Diamond-like-carbon) 표면처리 방법을 개발하였으며, stainless steel 304를 모재로 하여 텅스텐 첨가 DLC, 티타늄 첨가 DLC, 몰리브덴 첨가 DLC 금속분리판을 제작하였다. 제작된 금속분리판을 이용하여 내구성 평가,전기화학적 부식 특성, 성능평가 및 접촉저항 특성 등을 평가하였다. 전기화학적 부식특성의 경우 각각의 분리판에 대해 6.69, 1.2, 1.0 ${\mu}A/cm^2$로 모재인 STS 304의 25 ${\mu}A/cm^2$의 부식전류밀도에 비해 우수한 부식특성을 보였다. 또한 초기 성능에서 몰리브덴 첨가 DLC 분리판의 경우 300 mA/$cm^2$에서 0.757 V로 측정되었으며, 이는 graphite 분리판 측정 결과인 0.758 V와 유사한 성능을 보였다. 또한 내구성 평가에서 초기 성능 대비 성능 감소율이 10% 감소하는데 소요된 시간은 graphite 분리판의 경우 2,000시간으로 나타났으며, 몰리브덴 첨가 DLC 분리판의 경우 1,700시간으로 측정되었다. 1,500시간 까지의 성능 감소율은 grphite,텅스텐 첨가DLC,티타늄 첨가DLC, 몰리브덴 첨가 DLC 분리판 순으로 각각에 대해 37.7, 60.3, 92.8, 45.7 ${\mu}V$/hr로 나타났다.

  • PDF

Electrical Properties of Diamond-like Carbon Thin Film synthesized by PECVD (PECVD로 합성한 다이아몬드상 카본박막의 전기적 특성)

  • Choi, Won-Seok;Park, Mun-Gi;Hong, Byung-You
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.11
    • /
    • pp.973-976
    • /
    • 2008
  • In addition to its similarity to genuine diamond film, diamond-like carbon (DLC) film has many advantages, including its wide band gap and variable refractive index. In this study, DLC films were prepared by the RF PECVD (Plasma Enhanced Chemical Vapor Deposition) method on silicon substrates using methane ($CH_4$) and hydrogen ($H_2$) gas. We examined the effects of the RF power on the electrical properties of the DLC films. The films were deposited at several RF powers ranging from 50 to 175 W in steps of 25 W. The leakage current of DLC films increased at higher deposition RF power. And the resistivities of DLC films grown at 50 W and 175 W were $5\times10^{11}$ ${\Omega}cm$ and $2.68\times10^{10}$ ${\Omega}cm$, respectively.

Overexpression of the Downward Leaf Curling (DLC) Gene from Melon Changes Leaf Morphology by Controlling Cell Size and Shape in Arabidopsis Leaves

  • Kee, Jae-Jun;Jun, Sang Eun;Baek, Seung-A;Lee, Tae-Soo;Cho, Myung Rae;Hwang, Hyun-Sik;Lee, Suk-Chan;Kim, Jongkee;Kim, Gyung-Tae;Im, Kyung-Hoan
    • Molecules and Cells
    • /
    • v.28 no.2
    • /
    • pp.93-98
    • /
    • 2009
  • A plant-specific gene was cloned from melon fruit. This gene was named downward leaf curling (CmDLC) based on the phenotype of transgenic Arabidopsis plants overexpressing the gene. This expression level of this gene was especially upregulated during melon fruit enlargement. Overexpression of CmDLC in Arabidopsis resulted in dwarfism and narrow, epinastically curled leaves. These phenotypes were found to be caused by a reduction in cell number and cell size on the adaxial and abaxial sides of the epidermis, with a greater reduction on the abaxial side of the leaves. These phenotypic characteristics, combined with the more wavy morphology of epidermal cells in overexpression lines, indicate that CmDLC overexpression affects cell elongation and cell morphology. To investigate intracellular protein localization, a CmDLC-GFP fusion protein was made and expressed in onion epidermal cells. This protein was observed to be preferentially localized close to the cell membrane. Thus, we report here a new plant-specific gene that is localized to the cell membrane and that controls leaf cell number, size and morphology.

Investigation on field emission properties of diamond-like carbon thin film by variation of laser processing parameters (레이저 공정변수 변화에 따른 다이아몬드상 카본박막의 전계방출 특성분석)

  • Shim, Kyung-Suk;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1511-1513
    • /
    • 1999
  • In order to investigate the properties of diamond-like carbon(DLC) thin films depending on the deposition parameters, DLC thin films were systematically fabricated by pulsed laser deposition (PLD), DLC thin films have been shown advantageous field emission properties due to a negative electron affinity (NEA) and a low work function. At the atomic level. DLC is referred to the group of carbon materials with strong chemical bonding composition of $sp^2$ and $sp^3$ arrangements of atoms incorporated with an amorphous structure. The experiment was performed at substrate temperature in the range of room temperature to $600^{\circ}C$. The laser energy densiy was used to be in the range of $6J/cm^2$ to $20J/cm^2$, SEM, Raman, PL, XPS and field emission characteristics were used to investigate the DLC thin films.

  • PDF

The Variation of the Characteristics of DLC Thin films by Pulsed Laser Deposition (레이저 증착변수에 의한 다이아몬드상 카본 박막 특성변화)

  • Sim, Gyeong-Seok;Lee, Sang-Ryeol
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.5
    • /
    • pp.344-348
    • /
    • 1999
  • Diamond like carbon(DLC) thin films possesed not only marvelous material characteristics such as large thermal conductivity, high hardness and being chemically inert, but also possesed negative electron affinity (NEA) properties. The NEA is an extremely desirable property of the material used in microelestronics and vacuum microelestronics device. DLC films were fabricated by pulsed laser deposition(PLD). Theeffect of the laser energy density and the substrate temperature on the properies of DLC films was investigated. The experiment was accomplished at temperatures in the range of room temperature to $600^{\circ}C$. The laser energy density was in the range of 6 $J/cm^2$ to 16 $J/cm^2$.

  • PDF

The Variation of the Characteristics of DLC Thin films by Pulsed Laser Deposition (레이저 증착변수에 의한 다이아몬드상 카본 박막특성 변화)

  • Pang, Seong-Sik;Lee, Sang-Yeol;Jung, Hae-Suk;Park, Hyung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1306-1308
    • /
    • 1998
  • Diamond like carbon(DLC) thin films possesed not only marvelous material charateristics such as large thermal conductivity, high hardness and being chemically inert, but also possesed negative electron affinity(NEA) properties. The NEA is an extremely desirable property of the material used in microelestronics and vacuum microelestronics device. DLC films were fabricated by pulsed laser deposition(PLD). The effect of the laser energy density and the substrate temperature on the properies of DLC films was investigated. The experiment was accomplished at temperatures in the range of room temperature to $400^{\circ}C$. The laser energy density was in the range of $6 J/cm^2$ to $16 J/cm^2$.

  • PDF

Effects of Thickness and Defects of DLC Coating Layer on Corrosion Resistance of Metallic Bipolar Plates of PEMFCs (PEMFC 금속분리판의 내식성에 미치는 DLC 코팅층의 두께 및 결함의 영향)

  • Dong-Ho Shin;Seong-Jong Kim
    • Corrosion Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.235-245
    • /
    • 2024
  • DLC coatings have been widely applied in industrial fields that require high corrosion resistance due to their excellent mechanical characteristics and chemical stability. In this research, effects of DLC coating thickness and defects on corrosion resistance were investigated for application of metallic bipolar plates in polymer membrane electrolyte fuel cells (PEMFCs). Results revealed that a DLC coating thickness of 0.7 ㎛ could lead to a defect size reduction of about 75.9% compared to that of 0.3 ㎛.As a result of potentiodynamic polarization experiments, the current density under a potential of 0.6 V was measured to be less than 1 ㎂/cm2,which was an excellent value. Inparticular, the delamination ratio and the decrease rate of maximum pitting depth were up to 84.8% and 63.3%, respectively, with an increase in the DLC coating thickness. These results demonstrate that DLC coating thickness and defects are factors that can affect corrosion resistance of DLC coating and its substrate.

A study on the deposition of DLC films by magnetron PECVD (Magnetron PECVD에 의한 DLC 박막의 제작에 관한 연구)

  • Kim, Soung-Young;Lee, Jai-Sung;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1446-1449
    • /
    • 1996
  • Thin films of diamond-like carbon(DLC) have been deposited using a magnetron plasma-enhanced chemical vapor deposition(PECVD) method with an rf(13.56 MHz) plasma of $C_{3}H_{8}$. From the Langmuir probe I-V characteristics, it can be observed that increasing the magnetic field yields an increase of the temperature($T_e$) and density($N_e$) of electron. At a magnetic field of 82 Gauss, the estimated values of $T_e$ and $N_e$ are approximately $1.5\;{\times}\;10^5$ K(13.5 eV) and $1.3\;{\times}\;10^{11}\;cm^{-3}$, respectively. Such a highly dense plasma can be attributed to the enhanced ionization caused by the cyclotron motion of electrons in the presence of a magnetic field. On the other hand, the negative dc self-bias voltage($-V_{sb}$) decreases with an increasing magnetic field, which is irrespective of gas pressure in the range of $1{\sim}7$ mTorr. This result is well explained by a theoretical model considering the variation of $T_e$. Deposition rates of DLC films increases with a magnetic field. This may be due to the increased mean free path of electrons in the magnetron plasma. Structures of DLC films are examined by using various techniques such as FTIR and Raman spectroscopy. Most of hydrocarbon bonds in DLC films prepared consist of $sp^3$ tetrahedral bonds. Increasing the rf power leads to an enhancement of cross-linking of carbon atoms in DLC films. At approximately 140 W, the maximum film density obtained is about 2.4 $g/cm^3$.

  • PDF

Study on Electrical Conductivity, Transmittance and Gas Barrier Properties of DLC Thin Films (DLC 박막의 전기전도성, 투과율 및 가스베리어 특성에 관한 연구)

  • Park, S.B.;Kim, C.H.;Kim, T.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.4
    • /
    • pp.187-193
    • /
    • 2018
  • In this study, the electrical conductivity, transmittance and gas barrier properties of diamond-like carbon (DLC) thin films were studied. DLC is an insulator, and has transmittance and oxygen gas barrier properties varying depending on the thickness of the thin film. Recently, many researchers have been trying to apply DLC properties to specific industrial conditions. The DLC thin films were deposited by PECVD (Plasma Enhanced Chemical Vapor Deposition) process. The doping gas was used for the DLC film to have electrical conductivity, and the optimum conditions of transmittance and gas barrier properties were established by adjusting the gas ratio and DLC thickness. In order to improve the electrical conductivity of the DLC thin film, $N_2$ doping gas was used for $CH_4$ or $C_2H_2$ gas. Then, a heat treatment process was performed for 30 minutes in a box furnace set at $200^{\circ}C$. The lowest sheet resistance value of the DLC film was found to be $18.11k{\Omega}/cm^2$. On the other hand, the maximum transmittance of the DLC film deposited on the PET substrate was 98.8%, and the minimum oxygen transmission rate (OTR) of the DLC film of $C_2H_2$ gas was 0.83.

Development of Diamond-like Carbon Film as Passivation Layers for Power Transistors

  • Chang, Hoon;Lee, Hae-Wang;Chung, Suk-Koo;Shin, Jong-Han;Lim, Dae-Soon;Park, Jung-Ho
    • The Korean Journal of Ceramics
    • /
    • v.3 no.2
    • /
    • pp.92-95
    • /
    • 1997
  • Because of the novel characteristics such as chemical stability, hardness, electrical resistivity and thermal conductivity, diamond-like carbon (DLC) film is a suitable material for the passivation layers. For this purpose, using the PECVD, DLC films were synthesized at room temperature. The adhesion and the hardness of the DLC films deposited on Si an SiO2 substrate were measured. The resistivity of 5.3$\times$$10^8$$\Omega$.cm was measured by automatic spreading resistance probe analysis method. The thermal conductivities of different DLC films were measured and compared with that of phospho silicate glass (PSG) film which is commonly used as passivation layers. The thermal conductivity of DLC film was improved by increasing hydrogen flow rate up to 90 sccm and was better than that of PSG film. The patterning techniques of the DLC film developed using the RIE and the lift-off method to form 5$\mu\textrm{m}$ line. Finally, the thermal characteristics of the power transistor with the DLC film as passiviation layer was analyzed.

  • PDF