• Title/Summary/Keyword: Clustering coefficient

Search Result 197, Processing Time 0.031 seconds

III-V 삼상 화합물 반도체의 분자선 결정성장법에서의 열역학적 고찰

  • O, Won-Ung;O, Jae-Eng;Baek, Su-Hyun
    • ETRI Journal
    • /
    • v.13 no.4
    • /
    • pp.42-51
    • /
    • 1991
  • MBE 성장시 기판 표면에서의 성장과정을 운동론적 지배과정과 열역학적 지배과정으로 나누어 성장모델을 제시하였으며, 화학적 평형상태에서의 열역학이 III-V compound의 성장속도와 composition 에 미치는 영향을 기존의 보고된 결과 데이터와 비교 분석하였다. 특히 miscibility gap 내에 존재하는 III-V ternary compound의 경우 박막의 성질 및 소자의 특성에 영향을 미치는 alloy clustering은 저온 성장시 surface kinetics에 의해, 고온성장시에는 열역학적 spinodal decomposition에 의해 결정됨을 알수 있었다. 열역학적 모델에서는 기판과 layer사이의 lattice mismatch와 재료의 elastic coefficient의 함수인 additive strain Gibbs free energy, 그리고 ternary solid solution의 regular behavior를 가정하여 ternary alloy의 mixing에 기인한 excess Gibbs free energy를 고려하였다.

  • PDF

A Study on the Implementatin of Vocalbulary Independent Korean Speech Recognizer (가변어휘 음성인식기 구현에 관한 연구)

  • 황병한
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06d
    • /
    • pp.60-63
    • /
    • 1998
  • 본 논문에서는 사용자가 별도의 훈련과정 없이 인식대상 어휘를 추가 및 변경이 가능한 가변어휘 인식시스템에 관하여 기술한다. 가변어휘 음성인식에서는 미리 구성된 음소모델을 토대로 인식대상 어휘가 결정되명 발음사전에 의거하여 이들 어휘에 해당하는 음소모델을 연결함으로써 단어모델을 만든다. 사용된 음소모델은 현재 음소의 앞뒤의 음소 context를 고려한 문맥종속형(Context-Dependent)음소모델인 triphone을 사용하였고, 연속확률분포를 가지는 Hidden Markov Model(HMM)기반의 고립단어인식 시스템을 구현하였다. 비교를 위해 문맥 독립형 음소모델인 monophone으로 인식실험을 병행하였다. 개발된 시스템은 음성특징벡터로 MFCC(Mel Frequency Cepstrum Coefficient)를 사용하였으며, test 환경에서 나타나지 않은 unseen triphone 문제를 해결하기 위하여 state-tying 방법중 음성학적 지식에 기반을 둔 tree-based clustering 기법을 도입하였다. 음소모델 훈련에는 ETRI에서 구축한 POW (Phonetically Optimized Words) 음성 데이터베이스(DB)[1]를 사용하였고, 어휘독립인식실험에는 POW DB와 관련없는 22개의 부서명을 50명이 발음한 총 1.100개의 고립단어 부서 DB[2]를 사용하였다. 인식실험결과 문맥독립형 음소모델이 88.6%를 보인데 비해 문맥종속형 음소모델은 96.2%의 더 나은 성능을 보였다.

  • PDF

Link Analysis on Institutional Repository web Network of Indian Institute of Technologies Registered in open DOAR-uncovering Patterns and Trends Hidden in the Network

  • Kumar, Kutty
    • International Journal of Knowledge Content Development & Technology
    • /
    • v.8 no.2
    • /
    • pp.23-36
    • /
    • 2018
  • Institutional repositories (IR) are promising to be extremely advantageous to scholars especially in developing countries. IR initiatives started in India during the late nineties and the popularity of this concept is growing rapidly in the higher educational and research institutions to disseminate newly emerging knowledge and expertise. The purpose of this paper is to critically analyze the network links of IR websites among four IITs that are registered in open DOAR (Directory of Open Access Repositories) web portal. The Institutional Repositories chosen for the study are IIT Delhi, IIT Hyderabad, IIT Bombay, and IIT Kanpur. The analysis of the study focused on standard graph and network cohesion metrics, such as density, diameter, eccentricity and distances, and clustering coefficient; for an even more detailed analysis advanced centrality measures and fast algorithms such as clique census are used.

A study on design effect models for complex sample survey (설계효과모형 적용에 관한 연구)

  • Park, Inho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.3
    • /
    • pp.523-531
    • /
    • 2014
  • Design effect is often used in designing and planning sample surveys and/or in evaluating the efficiency of complex design features of the surveys. In this study, we applied Gabler et al. (2006)'s design effect model to 2013 Consumer behavior survey for food that was carried out by stratified two-stage sampling. Usability and adequacy of the design model to a real survey data are discussed and evaluated.

Detection of inappropriate advertising content on SNS using k-means clustering technique (k-평균 군집화 기법을 활용한 SNS의 부적절한 광고성 콘텐츠 탐지)

  • Lee, Dong-Hwan;Lim, Heui-Seok
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.570-573
    • /
    • 2021
  • 오늘날 SNS를 사용하는 사람들이 증가함에 따라, 생성되는 데이터도 많아지고 종류도 매우 다양해졌다. 하지만 유익한 정보만 존재하는 것이 아니라, 부정적, 반사회적, 사행성 등의 부적절한 콘텐츠가 공존한다. 때문에 사용자에 따라 적절한 콘텐츠를 필터링 할 필요성이 증가하고 있다. 따라서 본 연구에서는 SNS Instagram을 대상으로 콘텐츠의 해시태그를 수집하여 데이터화 했다. 또한 k-평균 군집화 기법을 적용하여, 유사한 특성의 콘텐츠들을 군집화하고, 각 군집은 실루엣 계수(Silhouette Coefficient)와 키워드 다양성(Keyword Diversity)을 계산하여 콘텐츠의 적절성을 판단하였다.

Multiobjective Space Search Optimization and Information Granulation in the Design of Fuzzy Radial Basis Function Neural Networks

  • Huang, Wei;Oh, Sung-Kwun;Zhang, Honghao
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.636-645
    • /
    • 2012
  • This study introduces an information granular-based fuzzy radial basis function neural networks (FRBFNN) based on multiobjective optimization and weighted least square (WLS). An improved multiobjective space search algorithm (IMSSA) is proposed to optimize the FRBFNN. In the design of FRBFNN, the premise part of the rules is constructed with the aid of Fuzzy C-Means (FCM) clustering while the consequent part of the fuzzy rules is developed by using four types of polynomials, namely constant, linear, quadratic, and modified quadratic. Information granulation realized with C-Means clustering helps determine the initial values of the apex parameters of the membership function of the fuzzy neural network. To enhance the flexibility of neural network, we use the WLS learning to estimate the coefficients of the polynomials. In comparison with ordinary least square commonly used in the design of fuzzy radial basis function neural networks, WLS could come with a different type of the local model in each rule when dealing with the FRBFNN. Since the performance of the FRBFNN model is directly affected by some parameters such as e.g., the fuzzification coefficient used in the FCM, the number of rules and the orders of the polynomials present in the consequent parts of the rules, we carry out both structural as well as parametric optimization of the network. The proposed IMSSA that aims at the simultaneous minimization of complexity and the maximization of accuracy is exploited here to optimize the parameters of the model. Experimental results illustrate that the proposed neural network leads to better performance in comparison with some existing neurofuzzy models encountered in the literature.

Change of Sludge Consortium in Response to Sequential Adaptation to Benzene, Toluene, and o-Xylene

  • Park, Jae-Yeon;Sang, Byoung-In
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.11
    • /
    • pp.1772-1781
    • /
    • 2007
  • Activated sludge was sequentially adapted to benzene, toluene, and o-xylene (BTX) to study the effects on the change of microbial community. Sludge adapted to BTX separately degraded each by various rates in the following order; toluene>o-xylene>benzene. Degradation rates were increased after exposure to repeated spikes of substrates. Eleven different kinds of sludge were prepared by the combination of BTX sequential adaptations. Clustering analyses (Jaccard, Dice, Pearson, and cosine product coefficient and dimensional analysis of MDS and PCA for DGGE patterns) revealed that acclimated sludge had different features from nonacclimated sludge and could be grouped together according to their prior treatment. Benzene- and xylene-adapted sludge communities showed similar profiles. The sludge profile was affected from the point of the final adaptation substrate regardless of the adaptation sequence followed. In the sludge adapted to 50 ppm toluene, Nitrosomonas sp. and bacterium were dominant, but these bands were not dominant in benzene and benzene after toluene adaptations. Instead, Flexibacter sp. was dominant in these cultures. Dechloromonas sp. was dominant in the culture adapted to 50 ppm benzene. Thauera sp. was the main band in the sludge adapted to 50 ppm xylene, but became vaguer as the xylene concentration was increased. Rather, Flexibacter sp. dominated in the sludge adapted to 100 ppm xylene, although not in the culture adapted to 250 ppm xylene. Two bacterial species dominated in the sludge adapted to 250 ppm xylene, and they also existed in the sludge adapted to 250 ppm xylene after toluene and benzene.

Genetic Diversity and Phylogenetic Relationships among Microsporidian Isolates from the Indian Tasar Silkworm, Antheraea mylitta, as Revealed by RAPD Fingerprinting Technique

  • Hassan, Wazid;Nath, B. Surendra
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.29 no.2
    • /
    • pp.169-178
    • /
    • 2014
  • In this study, we investigated genetic diversity of 22 microsporidian isolates infecting tropical tasar silkworm, Antheraea mylitta collected from various geographical forest locations in the state of Jharkhand, India, using polymerase chain reaction (PCR)-based marker assay: random amplified polymorphic DNA (RAPD). A type species, NIK-1s_mys was used as control for comparison. The shape of mature microsporidians was found to be oval to elongate, measuring 3.80 to $5.10{\mu}m$ in length and 2.56 to $3.30{\mu}m$ in width. Of the 20 RAPD primers screened, 16 primers generated reproducible profiles with 298 polymorphic fragments displaying high degree of polymorphism (97%). A total of 14 RAPD primers produced 45 unique putative genetic markers, which were used to differentiate the microsporidians. Calculation of genetic distance coefficients based on dice coefficient method and clustering with un-weighted pair group method using arithmetic average (UPGMA) analysis was conducted to unravel the genetic diversity of microsporidians infecting tasar silkworm. The similarity coefficients varied from 0.059 to 0.980. UPGMA analysis generated a dendrogram with four microsporidian groups, which appear to be different from each other as well as from NIK-1s_mys. Two-dimensional distribution based on Euclidean distance matrix also revealed considerable variability among different microsporidians identified from the tasar silkworms. Clustering of few microsporidian isolates was in accordance with the geographic origin. The results indicate that the RAPD profiles and specific/unique genetic markers can be used for differentiating as well as to identify different microsporidians with considerable accuracy.

Effective Image Segmentation using a Locally Weighted Fuzzy C-Means Clustering (지역 가중치 적용 퍼지 클러스터링을 이용한 효과적인 이미지 분할)

  • Alamgir, Nyma;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.12
    • /
    • pp.83-93
    • /
    • 2012
  • This paper proposes an image segmentation framework that modifies the objective function of Fuzzy C-Means (FCM) to improve the performance and computational efficiency of the conventional FCM-based image segmentation. The proposed image segmentation framework includes a locally weighted fuzzy c-means (LWFCM) algorithm that takes into account the influence of neighboring pixels on the center pixel by assigning weights to the neighbors. Distance between a center pixel and a neighboring pixels are calculated within a window and these are basis for determining weights to indicate the importance of the memberships as well as to improve the clustering performance. We analyzed the segmentation performance of the proposed method by utilizing four eminent cluster validity functions such as partition coefficient ($V_{pc}$), partition entropy ($V_{pe}$), Xie-Bdni function ($V_{xb}$) and Fukuyama-Sugeno function ($V_{fs}$). Experimental results show that the proposed LWFCM outperforms other FCM algorithms (FCM, modified FCM, and spatial FCM, FCM with locally weighted information, fast generation FCM) in the cluster validity functions as well as both compactness and separation.

Design of Optimized Radial Basis Function Neural Networks Classifier with the Aid of Principal Component Analysis and Linear Discriminant Analysis (주성분 분석법과 선형판별 분석법을 이용한 최적화된 방사형 기저 함수 신경회로망 분류기의 설계)

  • Kim, Wook-Dong;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.735-740
    • /
    • 2012
  • In this paper, we introduce design methodologies of polynomial radial basis function neural network classifier with the aid of Principal Component Analysis(PCA) and Linear Discriminant Analysis(LDA). By minimizing the information loss of given data, Feature data is obtained through preprocessing of PCA and LDA and then this data is used as input data of RBFNNs. The hidden layer of RBFNNs is built up by Fuzzy C-Mean(FCM) clustering algorithm instead of receptive fields and linear polynomial function is used as connection weights between hidden and output layer. In order to design optimized classifier, the structural and parametric values such as the number of eigenvectors of PCA and LDA, and fuzzification coefficient of FCM algorithm are optimized by Artificial Bee Colony(ABC) optimization algorithm. The proposed classifier is applied to some machine learning datasets and its result is compared with some other classifiers.