• Title/Summary/Keyword: Cluster-based Routing Scheme

Search Result 74, Processing Time 0.026 seconds

A Novel K-hop Cluster-based Ad hoc Routing Scheme with Delegation Functions (위임 기능을 이용한 새로운 K-hop 클러스터 기반 Ad hoc 라우팅 구조)

  • Kim Tae-yeon;Wang Ki-cheoul
    • Journal of Internet Computing and Services
    • /
    • v.5 no.5
    • /
    • pp.27-37
    • /
    • 2004
  • The existing ad hoc network protocols suffer the scalability problem due to the inherent characteristics of node mobility. Cluster-based routing protocols divide the member nodes into a set of clusters and perform a hierarchical routing between these clusters. This hierarchical feature help to improve the scalability of ad hoc network routing. However, previous k-hop cluster-based routing protocols face another problems, that is, control overhead of the cluster headers. This paper proposes a novel k-hop cluster-based routing scheme with delegation functions for mobile ad hoc networks. The scheme employs is based on tree topology to manage cluster members in effectively. The cluster headers do not manage the routing table for whole members, while the header keeps the routing table for its neighbor members and the member list for one hop over nodes within k-hop cluster. Then the in-between leveled nodes manage the nested nodes which is structured in the lower level. Therefore, the proposed mechanism can reduce some control overhead of the cluster leaders.

  • PDF

Secure Key Predistribution Scheme using Authentication in Cluster-based Routing Method (클러스터 기반에서의 인증을 통한 안전한 키 관리 기법)

  • Kim, Jin-Su;Choi, Seong-Yong;Jung, Kyung-Yong;Ryu, Joong-Kyung;Rim, Kee-Wook;Lee, Jung-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.9
    • /
    • pp.105-113
    • /
    • 2009
  • The previous key management methods are not appropriate for secure data communication in cluster-based routing scheme. Because cluster heads are elected in every round and communicate with the member nodes for authentication and share-key establishment phase in the cluster. In addition, there are not considered to mobility of nodes in previous key management mechanisms. In this paper, we propose the secure and effective key management mechanisim in the cluster-based routing scheme that if there are no share keys between cluster head and its nodes, we create the cluster key using authentication with base station or trust autentication and exchange the their information for a round.

Optimized Energy Cluster Routing for Energy Balanced Consumption in Low-cost Sensor Network

  • Han, Dae-Man;Koo, Yong-Wan;Lim, Jae-Hyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.6
    • /
    • pp.1133-1151
    • /
    • 2010
  • Energy balanced consumption routing is based on assumption that the nodes consume energy both in transmitting and receiving. Lopsided energy consumption is an intrinsic problem in low-cost sensor networks characterized by multihop routing and in many traffic overhead pattern networks, and this irregular energy dissipation can significantly reduce network lifetime. In this paper, we study the problem of maximizing network lifetime through balancing energy consumption for uniformly deployed low-cost sensor networks. We formulate the energy consumption balancing problem as an optimal balancing data transmitting problem by combining the ideas of corona cluster based network division and optimized transmitting state routing strategy together with data transmission. We propose a localized cluster based routing scheme that guarantees balanced energy consumption among clusters within each corona. We develop a new energy cluster based routing protocol called "OECR". We design an offline centralized algorithm with time complexity O (log n) (n is the number of clusters) to solve the transmitting data distribution problem aimed at energy balancing consumption among nodes in different cluster. An approach for computing the optimal number of clusters to maximize the network lifetime is also presented. Based on the mathematical model, an optimized energy cluster routing (OECR) is designed and the solution for extending OEDR to low-cost sensor networks is also presented. Simulation results demonstrate that the proposed routing scheme significantly outperforms conventional energy routing schemes in terms of network lifetime.

A Two level Detection of Routing layer attacks in Hierarchical Wireless Sensor Networks using learning based energy prediction

  • Katiravan, Jeevaa;N, Duraipandian;N, Dharini
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4644-4661
    • /
    • 2015
  • Wireless sensor networks are often organized in the form of clusters leading to the new framework of WSN called cluster or hierarchical WSN where each cluster head is responsible for its own cluster and its members. These hierarchical WSN are prone to various routing layer attacks such as Black hole, Gray hole, Sybil, Wormhole, Flooding etc. These routing layer attacks try to spoof, falsify or drop the packets during the packet routing process. They may even flood the network with unwanted data packets. If one cluster head is captured and made malicious, the entire cluster member nodes beneath the cluster get affected. On the other hand if the cluster member nodes are malicious, due to the broadcast wireless communication between all the source nodes it can disrupt the entire cluster functions. Thereby a scheme which can detect both the malicious cluster member and cluster head is the current need. Abnormal energy consumption of nodes is used to identify the malicious activity. To serve this purpose a learning based energy prediction algorithm is proposed. Thus a two level energy prediction based intrusion detection scheme to detect the malicious cluster head and cluster member is proposed and simulations were carried out using NS2-Mannasim framework. Simulation results achieved good detection ratio and less false positive.

A Scalable Content-Based Routing Scheme Considering Group Mobility in Tactical Mobile Ad-hoc Networks (군 MANET 환경에서 그룹 이동성을 고려한 확장성 있는 콘텐트 기반 라우팅 기법)

  • Ko, Kwang-Tae;Kang, Kyung-Ran;Cho, Young-Jong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5B
    • /
    • pp.721-733
    • /
    • 2010
  • In this paper, we propose a scalable content-based routing scheme for the tactical mobile ad-hoc networks where the nodes usually move together forming a group. Our scheme is classified as a content-based routing scheme based on publish and subscribe model. The nodes compose a cluster according to their position and interest. Our scheme allows multi-level cluster nesting. As a publish/subscribe model does, each node announces its interest to the cluster head who aggregates and announces the interests from cluster members to its neighbor cluster head. Actual data messages are delivered to the end node via cluster header in the reverse direction of the interest announcement. Using Qualnet simulator, we evaluated the performance of our scheme in comparison with two well-known content-based routing schemes. Simulation results show that our scheme maintains higher message delivery ratio as number of nodes increases whereas the two schemes show much lower delivery ratio. In addition, as the group mobility gets faster our scheme incurs less or similar control message overhead compared with the two schemes.

Cluster-Based Multi-Path Routing for Multi-Hop Wireless Networks (무선 다중 홉 네트워크에서의 클러스터 기반 다중 경로 라우팅)

  • Zhang, Jie;Jeong, Choong-Kyo;Lee, Goo-Yeon;Kim, Hwa-Jong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.6
    • /
    • pp.114-121
    • /
    • 2008
  • Multi-path routing has been studied widely in wired networks. Multi-path routing is known to increase end-to-end throughput and provide load balancing in wired networks. However, its advantage is not obvious in wireless multi-hop network because the traffic along the multiple paths may interfere with adjacent paths. In the paper, we introduce a new multi-path routing scheme, Cluster-Based Multi-Path Routing for multi-hop wireless networks. The main idea of the proposed routing scheme is to extend the hop-by-hop multi-path to a cluster-by-cluster multi-path. In cluster network, each cluster can work independently from other clusters and hence reduce interference. The purpose of the proposed scheme is to find a less interfering path for wireless multi-hop networks. We also showed the throughput improvement of the proposed scheme through simulations.

Cluster-Based Routing Mechanism for Efficient Data Delivery to Group Mobile Users in Wireless Ad-Hoc Networks (그룹 이동성을 가지는 모바일 사용자들 간의 효율적인 데이터 공유를 위한 클러스터 기반 그룹 라우팅 기법 메커니즘)

  • Yoo, Jinhee;Han, Kyeongah;Jeong, Dahee;Lee, HyungJune
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.11
    • /
    • pp.1060-1073
    • /
    • 2013
  • In this paper, we present a cluster-based routing scheme for efficiently delivering data to group mobile users by extracting and clustering mobile user group simply from beacon message information in wireless ad-hoc networks. First, we propose an online-clustering mechanism that uses a local neighbor table on each node by recursively transmitting to neighbor nodes, and forms a group table where a set of listed nodes are classified as group members, without incurring much overhead. A node that appears the most frequently from neighbor tables throughout the network is selected as the cluster-head node, serving as a data gateway for the intra-cluster. Second, we design an inter-cluster routing that delivers data from stationary data sources to the selected cluster-head node, and a intra-cluster routing to deliver from the cluster-head node to users. Simulation results based on ns-2 in the ad-hoc networks consisting of 518 stationary nodes and 20 mobile nodes show that our proposed clustering mechanism achieves high clustering accuracy of 96 % on average. Regarding routing performance, our cluster-based routing scheme outperforms a naive one-to-one routing scheme without any clustering by reducing routing cost up to 1/20. Also, our intra-cluster routing utilizing a selected cluster-head node reduces routing cost in half as opposed to a counterpart of the intra-cluster routing through a randomly-selected internal group member.

Dynamic On-Chip Network based on Clustering for MPSoC (동적 라우팅을 사용하는 클러스터 기반 MPSoC 구조)

  • Kim, Jang-Eok;Kim, Jae-Hwan;Ahn, Byung-Gyu;Sin, Bong-Sik;Chong, Jong-Wha
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.991-992
    • /
    • 2006
  • Multiprocessor system is efficient and high performance architecture to overcome a limitation of single core SoC. In this paper, we propose a multiprocessor SoC (MPSoC) architecture which provides the low complexity and the high performance. The dynamic routing scheme has a serious problem in which the complexity of routing increases exponentially. We solve this problem by making a cluster with several PEs (Processing Element). In inter-cluster network, we use deterministic routing scheme and in intra-cluster network, we use dynamic routing scheme. In order to control the hierarchical network, we propose efficient router architecture by using smart crossbar switch. We modeled 2-D mesh topology and used simulator based on C/C++. The results of this routing scheme show that our approach has less complexity and improved throughput as compared with the pure deterministic routing architecture and the pure dynamic routing architecture.

  • PDF

Cluster-based AODV for ZigBee Wireless Measurement and Alarm Systems (ZigBee 무선계측/경보 시스템을 위한 클러스터 기반의 AODV)

  • Park, Jae-Won;Kim, Hong-Rok;Lee, Yun-Jung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.9
    • /
    • pp.920-926
    • /
    • 2007
  • Establishing a fixed path for the message delivery through a wireless network is impossible due to the mobility. Among the number of routing protocols that have been proposed for wireless ad-hoc networks, the AODV(Ad-hoc On-demand Distance Vector) algorithm is suitable in the case of highly dynamic topology changes, along with ZigBee Routing(ZBR), with the exception of route maintenance. Accordingly, this paper introduces a routing scheme focusing on the energy efficiency and route discovery time for wireless alarm systems using IEEE 802.15.4-based ZigBee. Essentially, the proposed routing algorithm utilizes a cluster structure and applies ZBR within a cluster and DSR (Dynamic Source Routing) between clusters. The proposed algorithm does not require a routing table for the cluster heads, as the inter-cluster routing is performed using DSR. The performance of the proposed algorithm is evaluated and compared with ZBR using an NS2 simulator. The results confirm that the proposed Cluster-based AODV (CAODV) algorithm is more efficient than ZBR in terms of the route discovery time and energy consumption.

Practical Data Transmission in Cluster-Based Sensor Networks

  • Kim, Dae-Young;Cho, Jin-Sung;Jeong, Byeong-Soo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.3
    • /
    • pp.224-242
    • /
    • 2010
  • Data routing in wireless sensor networks must be energy-efficient because tiny sensor nodes have limited power. A cluster-based hierarchical routing is known to be more efficient than a flat routing because only cluster-heads communicate with a sink node. Existing hierarchical routings, however, assume unrealistically large radio transmission ranges for sensor nodes so they cannot be employed in real environments. In this paper, by considering the practical transmission ranges of the sensor nodes, we propose a clustering and routing method for hierarchical sensor networks: First, we provide the optimal ratio of cluster-heads for the clustering. Second, we propose a d-hop clustering scheme. It expands the range of clusters to d-hops calculated by the ratio of cluster-heads. Third, we present an intra-cluster routing in which sensor nodes reach their cluster-heads within d-hops. Finally, an inter-clustering routing is presented to route data from cluster-heads to a sink node using multiple hops because cluster-heads cannot communicate with a sink node directly. The efficiency of the proposed clustering and routing method is validated through extensive simulations.