At the end of 1999, the TeraCluster Project in the KISTI Supercomputing Center was initiated to explore the possibility of PC clusters as a scientific computing platform to replace the Cray T3E system in KISTI by 2002. Since actual performance of a computing system varies significantly for different architectures, representative in-house codes from major application fields were executed to evaluate the actual performance of systems with different combination of CPU, network and network topology. As an example of practical CFD(Computational Fluid Dynamics) simulations, the flow past the Onera-M6 wing and the flow past a infinite wing were simulated on a clusters of Linux and several other hardware environments.
An efficient two-level domain decomposition parallel algorithm is suggested to solve large-DOF structural problems with nonlinear material models generating unsymmetric tangent matrices, such as a group of plastic-damage material models. The parallel version of the stabilized bi-conjugate gradient method is developed to solve unsymmetric coarse problems iteratively. In the present approach the coarse DOF system is solved parallelly on each processor rather than the whole system equation to minimize the data communication between processors, which is appropriate to maintain the computing performance on a non-supercomputer level cluster system. The performance test results show that the suggested algorithm provides scalability on computing performance and an efficient approach to solve large-DOF nonlinear structural problems on a cluster system.
Proceedings of the Korean Society of Computer Information Conference
/
2011.01a
/
pp.55-58
/
2011
This paper proposes a method of occluded number recognition by matching interest points. Interest points of input pattern are found via SURF features extracting and matched to interest points of clusters in database following three steps: SURF matching, coordinate matching and SURF matching on coordinate matched points. Then the satisfied interest points are counted to compute matching rate of each cluster. The input pattern will be assigned to cluster having highest matching rate. We have experimented our method to different numerical fonts and got encouraging results.
Dwarf is a highly compressed structure, which compresses the cube by eliminating the semantic redundancies while computing a data cube. Although it has high compression ratio, Dwarf is slower in querying and more difficult in updating due to its structure characteristics. We all know that the original intention of data cube is to speed up the query performance, so we propose two novel clustering methods for query optimization: the recursion clustering method which clusters the nodes in a recursive manner to speed up point queries and the hierarchical clustering method which clusters the nodes of the same dimension to speed up range queries. To facilitate the implementation, we design a partition strategy and a logical clustering mechanism. Experimental results show our methods can effectively improve the query performance on data cubes, and the recursion clustering method is suitable for both point queries and range queries.
External sort on cluster computers requires not only fast internal sorting computation but also careful scheduling of disk input and output and interprocessor communication through networks. This is because the overall time for the execution is determined by reflecting the times for all the jobs involved, and the portion for interprocessor communication and disk I/O operations is significant. In this paper, we improve the sorting performance (sorting throughput) on a cluster of PCs with a low-speed network by developing a new algorithm that enables even distribution of load among processors, and optimizes the disk read and write operations with other computation/communication activities during the sort. Experimental results support the effectiveness of the algorithm. We observe the algorithm reduces the sort time by 45% compared to the previous NOW-sort[1], and provides more scalability in the expansion of the computing nodes of the cluster as well.
Self-Oranizing Map(SOM) is an unsupervised neural network providing cluster analysis of high dimensional input data. The output from the SOM is represented in map that help us to explore data. The weak point of conventional SOM is when the map is large, it take a long time to train the data. The computing time is known to be O(MN) for trainning to find the winning node (M,N are the number of nodes in width and height of the map). This paper presents a new method to reduce the computing time by creating new map. Each node in a new map is the centroid of nodes' group that are in the original map. After create a new map, we find the winning node of this map, then find the winning node in original map only in nodes that are represented by the winning node from the new map. This new method is called "High Speed Self-Oranizing Map"(HS-SOM). Our experiment use HS-SOM to cluster documents and compare with SOM. The results from the experiment shows that HS-SOM can reduce computing time by 30%-50% over conventional SOM.
Journal of the Korean Society for Aeronautical & Space Sciences
/
v.34
no.8
/
pp.33-40
/
2006
A parallel computing strategy for finite element(FE) processing is described and implemented in nonlinear explicit FE code and its parallel performances are evaluated. A self-made linux-cluster supercomputer with 520 CPUs is used as a bench mark test bed. It is observed that speed-up is increased almost idealy even up to 256 CPUs for a large scale model. A communication over head and its effect on the parallel performance is also examined. Parallel performance is compare with the commercial code and developed code shows superior performance as the number of CPUs used are increased.
Kang, Sae-Hoon;Kim, Dae-Woong;Lee, Young-Hee;Hyun, Soon-J.;Lee, Dong-Man;Lee, Ben
ETRI Journal
/
v.29
no.5
/
pp.545-558
/
2007
This paper presents an efficient semantic service discovery scheme called UbiSearch for a large-scale ubiquitous computing environment. A semantic service discovery network in the semantic vector space is proposed where services that are semantically close to each other are mapped to nearby positions so that the similar services are registered in a cluster of resolvers. Using this mapping technique, the search space for a query is efficiently confined within a minimized cluster region while maintaining high accuracy in comparison to the centralized scheme. The proposed semantic service discovery network provides a number of novel features to evenly distribute service indexes to the resolvers and reduce the number of resolvers to visit. Our simulation study shows that UbiSearch provides good semantic searchability as compared to the centralized indexing system. At the same time, it supports scalable semantic queries with low communication overhead, balanced load distribution among resolvers for service registration and query processing, and personalized semantic matching.
Journal of the Korea Institute of Information and Communication Engineering
/
v.12
no.10
/
pp.1744-1750
/
2008
As the computing and network technique move rm and spread widly, the usage of multimedia application becomes in general while the usage of text based application becomes low. Especially the application which treats the streaming media such as video or movie, one of multimedia data, holds a majority in the usage of computing. MPEG, one of the typical compression standard of streaming media, provides very high compression ratio so that general users could be close to the streaming media with easy usage. However, the encoding of MPEG requires lots of computing power and time. In the paper, we design and implement a parallel MPEG encoder with MPI in cluster envrionment to reduce the encoding time of MPEG.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.3
/
pp.1238-1259
/
2019
Saving energy is a big challenge for Wireless Sensor Networks (WSNs), which becomes even more critical in large-scale WSNs. Most energy waste is communication related, such as collision, overhearing and idle listening, so the schedule-based access which can avoid these wastes is preferred for WSNs. On the other hand, clustering technique is considered as the most promising solution for topology management in WSNs. Hence, providing interference-free clustering is vital for WSNs, especially for large-scale WSNs. However, schedule management in cluster-based networks is never a trivial work, since it requires inter-cluster cooperation. In this paper, we propose a clustering method, called Interference-Free Clustering Protocol (IFCP), to partition a WSN into interference-free clusters, making timeslot management much easier to achieve. Moreover, we model the clustering problem as a multi-objective optimization issue and use non-dominated sorting genetic algorithm II to solve it. Our proposal is finally compared with two adaptive clustering methods, HEED-CSMA and HEED-BMA, demonstrating that it achieves the good performance in terms of delay, packet delivery ratio, and energy consumption.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.