• Title/Summary/Keyword: Cloud storage system

Search Result 188, Processing Time 0.025 seconds

A Study on The Conversion Factor between Heterogeneous DBMS for Cloud Migration

  • Joonyoung Ahn;Kijung Ryu;Changik Oh;Taekryong Han;Heewon Kim;Dongho Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.8
    • /
    • pp.2450-2463
    • /
    • 2024
  • Many legacy information systems are currently being clouded. This is due to the advantage of being able to respond flexibly to the changes in user needs and system environment while reducing the initial investment cost of IT infrastructure such as servers and storage. The infrastructure of the information system migrated to the cloud is being integrated through the API connections, while being subdivided by using MSA (Micro Service Architecture) internally. DBMS (Database Management System) is also becoming larger after cloud migration. Scale calculation in most layers of the application architecture can be measured and calculated from auto-scaling perspective, but the method of hardware scale calculation for DBMS has not been established as standardized methodology. If there is an error in hardware scale calculation of DBMS, problems such as poor performance of the information system or excessive auto-scaling may occur. In addition, evaluating hardware size is more crucial because it also affects the financial cost of the migration. CPU is the factor that has the greatest influence on hardware scale calculation of DBMS. Therefore, this paper aims to calculate the conversion factor for CPU scale calculation that will facilitate the cloud migration between heterogeneous DBMS. In order to do that, we utilize the concept and definition of hardware capacity planning and scale calculation in the on-premise information system. The methods to calculate the conversion factor using TPC-H tests are proposed and verified. In the future, further research and testing should be conducted on the size of the segmented CPU and more heterogeneous DBMS to demonstrate the effectiveness of the proposed test model.

A Deep Learning Approach for Intrusion Detection

  • Roua Dhahbi;Farah Jemili
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.89-96
    • /
    • 2023
  • Intrusion detection has been widely studied in both industry and academia, but cybersecurity analysts always want more accuracy and global threat analysis to secure their systems in cyberspace. Big data represent the great challenge of intrusion detection systems, making it hard to monitor and analyze this large volume of data using traditional techniques. Recently, deep learning has been emerged as a new approach which enables the use of Big Data with a low training time and high accuracy rate. In this paper, we propose an approach of an IDS based on cloud computing and the integration of big data and deep learning techniques to detect different attacks as early as possible. To demonstrate the efficacy of this system, we implement the proposed system within Microsoft Azure Cloud, as it provides both processing power and storage capabilities, using a convolutional neural network (CNN-IDS) with the distributed computing environment Apache Spark, integrated with Keras Deep Learning Library. We study the performance of the model in two categories of classification (binary and multiclass) using CSE-CIC-IDS2018 dataset. Our system showed a great performance due to the integration of deep learning technique and Apache Spark engine.

A Study on Measurement Parameters of Virtualized Resources on Cloud Computing Networks (클라우드 컴퓨팅 네트워크에서 가상화 장비 평가 항목 연구)

  • Lee, Wonhyuk;Park, Byungyeon;Kim, Seunghae;Kim, TaeYeon;Kim, Hyuncheol
    • Convergence Security Journal
    • /
    • v.14 no.7
    • /
    • pp.85-90
    • /
    • 2014
  • Cloud computing originated simply to request and execute the desired operation from the network of clouds. It means that an IT resource that provides a service using the Internet technology. It is getting the most attention in today's IT trends. In cloud computing networks, devices and data centers which are composed of the server, storage and application are connected over network. That is, data of computers in different physical locations are integrated using the virtualization technology to provide a service. Therefore cloud computing system is a key information resource, standardized methods and assessment system are required. In this paper, we aims to derive the parameters and information for research of technical standards stability evaluation method associated with various cloud computing equipment.

A Novel Framework for Resource Orchestration in OpenStack Cloud Platform

  • Muhammad, Afaq;Song, Wang-Cheol
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5404-5424
    • /
    • 2018
  • This work is mainly focused on two major topics in cloud platforms by using OpenStack as a case study: management and provisioning of resources to meet the requirements of a service demanded by remote end-user and relocation of virtual machines (VMs) requests to offload the encumbered compute nodes. The general framework architecture contains two subsystems: 1) An orchestrator that allows to systematize provisioning and resource management in OpenStack, and 2) A resource utilization based subsystem for vibrant VM relocation in OpenStack. The suggested orchestrator provisions and manages resources by: 1) manipulating application program interfaces (APIs) delivered by the cloud supplier in order to allocate/control/manage storage and compute resources; 2) interrelating with software-defined networking (SDN) controller to acquire the details of the accessible resources, and training the variations/rules to manage the network based on the requirements of cloud service. For resource provisioning, an algorithm is suggested, which provisions resources on the basis of unused resources in a pool of VMs. A sub-system is suggested for VM relocation in a cloud computing platform. The framework decides the proposed overload recognition, VM allocation algorithms for VM relocation in clouds and VM selection.

An Empirical Analysis on the Persistent Usage Intention of Chinese Personal Cloud Service (개인용 클라우드 서비스에 대한 중국 사용자의 지속적 사용의도에 관한 실증 연구)

  • Yu, Hexin;Sura, Suaini;Ahn, Jong-chang
    • Journal of Internet Computing and Services
    • /
    • v.16 no.3
    • /
    • pp.79-93
    • /
    • 2015
  • With the rapid development of information technology, the ways of usage have changed drastically. The ways and efficiency of traditional service application to data processing already could not satisfy the requirements of modern users. Nowadays, users have already understood the importance of data. Therefore, the processing and saving of big data have become the main research of the Internet service company. In China, with the rise and explosion of 115 Cloud leads to other technology companies have began to join the battle of cloud services market. Although currently Chinese cloud services are still mainly dominated by cloud storage service, the series of service contents based on cloud storage service have been affirmed by users, and users willing to try these new ways of services. Thus, how to let users to keep using cloud services has become a topic that worth for exploring and researching. The academia often uses the TAM model with statistical analysis to analyze and check the attitude of users in using the system. However, the basic TAM model obviously already could not satisfy the increasing scale of system. Therefore, the appropriate expansion and adjustment to the TAM model (i. e. TAM2 or TAM3) are very necessary. This study has used the status of Chinese internet users and the related researches in other areas in order to expand and improve the TAM model by adding the brand influence, hardware environment and external environments to fulfill the purpose of this study. Based on the research model, the questionnaires were developed and online survey was conducted targeting the cloud services users of four Chinese main cities. Data were obtained from 210 respondents were used for analysis to validate the research model. The analysis results show that the external factors which are service contents, and brand influence have a positive influence to perceived usefulness and perceived ease of use. However, the external factor hardware environment only has a positive influence to the factor of perceived ease of use. Furthermore, the perceived security factor that is influenced by brand influence has a positive influence persistent intention to use. Persistent intention to use also was influenced by the perceived usefulness and persistent intention to use was influenced by the perceived ease of use. Finally, this research analyzed external variables' attributes using other perspective and tried to explain the attributes. It presents Chinese cloud service users are more interested in fundamental cloud services than extended services. In private cloud services, both of increased user size and cooperation among companies are important in the study. This study presents useful opinions for the purpose of strengthening attitude for private cloud service users can use this service persistently. Overall, it can be summarized by considering the all three external factors could make Chinese users keep using the personal could services. In addition, the results of this study can provide strong references to technology companies including cloud service provider, internet service provider, and smart phone service provider which are main clients are Chinese users.

Container-Friendly File System Event Detection System for PaaS Cloud Computing (PaaS 클라우드 컴퓨팅을 위한 컨테이너 친화적인 파일 시스템 이벤트 탐지 시스템)

  • Jeon, Woo-Jin;Park, Ki-Woong
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.15 no.1
    • /
    • pp.86-98
    • /
    • 2019
  • Recently, the trend of building container-based PaaS (Platform-as-a-Service) is expanding. Container-based platform technology has been a core technology for realizing a PaaS. Containers have lower operating overhead than virtual machines, so hundreds or thousands of containers can be run on a single physical machine. However, recording and monitoring the storage logs for a large number of containers running in cloud computing environment occurs significant overhead. This work has identified two problems that occur when detecting a file system change event of a container running in a cloud computing environment. This work also proposes a system for container file system event detection in the environment by solving the problem. In the performance evaluation, this work performed three experiments on the performance of the proposed system. It has been experimentally proved that the proposed monitoring system has only a very small effect on the CPU, memory read and write, and disk read and write speeds of the container.

Development of scalable big data storage system using network computing technology (네트워크 컴퓨팅 기술을 활용한 확장 가능형 빅데이터 스토리지 시스템 개발)

  • Park, Jung Kyu;Park, Eun Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.11
    • /
    • pp.1330-1336
    • /
    • 2019
  • As the Fourth Industrial Revolution era began, a variety of devices are running on the cloud. These various devices continue to generate various types of data or large amounts of multimedia data. To handle this situation, a large amount of storage is required, and big data technology is required to process stored data and obtain accurate information. NAS (Network Attached Storage) or SAN (Storage Area Network) technology is typically used to build high-speed, high-capacity storage in a network-based environment. In this paper, we propose a method to construct a mass storage device using Network-DAS which is an extension technology of DAS (Direct Attached Storage). Benchmark experiments were performed to verify the scalability of the storage system with 76 HDD. Experimental results show that the proposed high performance mass storage system is scalable and reliable.

Development of Linking & Management System for High-Resolution Raw Geo-spatial Data based on the Point Cloud DB (Point Cloud 기반의 고해상도 원시데이터 연계 및 관리시스템 개발)

  • KIM, Jae-Hak;LEE, Dong-Ha
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.4
    • /
    • pp.132-144
    • /
    • 2018
  • 3D Geo-spatial information models have been widely used in the field of Civil Engineering, Medical, Computer Graphics, Urban Management and many other. Especially, in surveying and geo-spatial field, the demand for high quality 3D geospatial information and indoor spatial information is so highly increasing. However, it is so difficult to provide a low-cost and high efficiency service to the field which demand the highest quality of 3D model, because pre-constructed spatial data are composed of different formats and storage structures according to the application purpose of each institutes. In fact, the techniques to construct a high applicable 3D geo-spatial model is very expensive to collect and analyze geo-spatial data, but most demanders of 3D geo-spatial model never want to pay the high-cost to that. This study, therefore, suggest the effective way to construct 3D geo-spatial model with low-cost of construction. In general, the effective way to reduce the cost of constructing 3D geo-spatial model as presented in previous studies is to combine the raw data obtained from point cloud observatory and UAV imagery, however this method has some limitation of usage from difficulties to approve the use of raw data because of those have been managed separately by various institutes. To solve this problem, we developed the linking & management system for unifying a high-Resolution raw geo-spatial data based on the point cloud DB and apply this system to extract the basic database from 3D geo-spatial mode for the road database registration. As a result of this study, it can be provided six contents of main entries for road registration by applying the developed system based on the point cloud DB.

A Fog-based IoT Service Interoperability System using Blockchain in Cloud Environment (클라우드 환경에서 블록체인을 이용한 포그 기반 IoT 서비스 상호운용 시스템)

  • Kim, Mi Sun;Park, Yong Suk;Seo, Jae Hyun
    • Smart Media Journal
    • /
    • v.11 no.3
    • /
    • pp.39-53
    • /
    • 2022
  • Cloud of Things (CoT) can provide IoT applications with unlimited storage functions and processing power supported by cloud services. However, in a centralized cloud of things, it can create a single point of failure that can lead to bottleneck problems, outages of the CoT network. In this paper, to solve the problem of centralized cloud of things and interoperate between different service domains, we propose an IoT service interoperability system using distributed fog computing and blockchain technology. Distributed fog is used to provide real-time data processing and services in fog systems located at a geographically close distance to IoT devices, and to enable service interoperability between each fog using smart contracts and distributed ledgers of the blockchain. The proposed system provides services within a region close to the distributed fog entrusted with the service from the cloud, and it is possible to access the services of other fogs without going through the cloud even between fogs. In addition, by sharing a service right token issuance information between the cloud and fog nodes using a blockchain network, the integrity of the token can be guaranteed and reliable service interoperability between fog nodes can be performed.

Hybrid Memory Adaptor for OpenStack Swift Object Storage (OpenStack Swift 객체 스토리지를 위한 하이브리드 메모리 어댑터 설계)

  • Yoon, Su-Kyung;Nah, Jeong Eun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.61-67
    • /
    • 2020
  • This paper is to propose a hybrid memory adaptor using next-generation nonvolatile memory devices such as phase-change memory to improve the performance limitations of OpenStack-based object storage systems. The proposed system aims to improve the performance of the account and container servers for object metadata management. For this, the proposed system consists of locality-based dynamic page buffer, write buffer, and nonvolatile memory modules. Experimental results show that the proposed system improves the hit rate by 5.5% compared to the conventional system.