• Title/Summary/Keyword: Cloud storage system

Search Result 188, Processing Time 0.027 seconds

Technical analysis of Cloud Storage for Cloud Computing (클라우드 컴퓨팅을 위한 클라우드 스토리지 기술 분석)

  • Park, Jeong-Su;Bae, Yu-Mi;Jung, Sung-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.5
    • /
    • pp.1129-1137
    • /
    • 2013
  • Cloud storage system that cloud computing providers provides large amounts of data storage and processing of cloud computing is a key component. Large vendors (such as Facebook, YouTube, Google) in the mass sending of data through the network quickly and easily share photos, videos, documents, etc. from heterogeneous devices, such as tablets, smartphones, and the data that is stored in the cloud storage using was approached. At time, growth and development of the globally data, the cloud storage business model emerging is getting. Analysis new network storage cloud storage services concepts and technologies, including data manipulation, storage virtualization, data replication and duplication, security, cloud computing core.

A Survey on Cloud Storage System Security via Encryption Mechanisms

  • Alsuwat, Wejdan;Alsuwat, Hatim
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.181-186
    • /
    • 2022
  • Cloud computing is the latest approach that is developed for reducing the storage of space to store the data and helps the quick sharing of the data. An increase in the cloud computing users is observed that is also making the users be prone to hacker's attacks. To increase the efficiency of cloud storage encryption mechanisms are used. The encryption techniques that are discussed in this survey paper are searchable encryption, attribute-based, Identity-based encryption, homomorphic encryption, and cloud DES algorithms. There are several limitations and disadvantages of each of the given techniques and they are discussed in this survey paper. Techniques are found to be effective and they can increase the security of cloud storage systems.

In-Memory File System Backed by Cloud Storage Services as Permanent Storages (클라우드 스토리지를 최종 저장 장치로 사용하는 인메모리 파일 시스템)

  • Lee, Kyungjun;Kim, Jiwon;Ryu, Sungtae;Han, Hwansoo
    • Journal of KIISE
    • /
    • v.43 no.8
    • /
    • pp.841-847
    • /
    • 2016
  • As network technology advances, a larger number of devices are connected through the Internet. Recently, cloud storage services are gaining popularity, as they are convenient to access anytime and anywhere. Among cloud storage services, object storage is the representative one due to their characteristics of low cost, high availability, and high durability. One limitation of object storage services is that they can access data on the cloud only through the HTTP-based RESTful APIs. In our work, we resolve this limitation with the in-memory file system which provides a POSIX interface to the file system users and communicates with cloud object storages with RESTful APIs. In particular, our flush mechanism is compatible with existing file systems, as it is based on the swap mechanism of the Linux kernel. Our in-memory file system backed by cloud storage reduces the performance overheads and shows a better performance than S3QL by 57% in write operations. It also shows a comparable performance to tmpfs in read operations.

A Reliable Secure Storage Cloud and Data Migration Based on Erasure Code

  • Mugisha, Emmy;Zhang, Gongxuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.436-453
    • /
    • 2018
  • Storage cloud scheme, pushing data to the storage cloud poses much attention regarding data confidentiality. With encryption concept, data accessibility is limited because of encrypted data. To secure storage system with high access power is complicated due to dispersed storage environment. In this paper, we propose a hardware-based security scheme such that a secure dispersed storage system using erasure code is articulated. We designed a hardware-based security scheme with data encoding operations and migration capabilities. Using TPM (Trusted Platform Module), the data integrity and security is evaluated and achieved.

Efficient Update Method for Cloud Storage System

  • Khill, Ki-Jeong;Lee, Sang-Min;Kim, Young-Kyun;Shin, Jaeryong;Song, Seokil
    • International Journal of Contents
    • /
    • v.10 no.1
    • /
    • pp.62-67
    • /
    • 2014
  • Usually, cloud storage systems are developed based on DFS (Distributed File System) for scalability and reliability reasons. DFSs are designed to improve throughput than IO response time, and therefore, they are appropriate for batch processing jobs. Recently, cloud storage systems have been used for update intensive applications such as OLTP and so on. However, in DFSs, in-place update operations are not carefully considered. Therefore, when updates are frequent, I/O performance of DFSs are degraded significantly. DFSs with RAID techniques have been proposed to improve their performance and reliability. Their performance degradation caused by frequent update operations can be more significant. In this paper, we propose an in-place update method for DFS RAID exploiting a differential logging technique. The proposed method reduces the I/O costs, network traffic and XOR operation costs for RAID. We demonstrate the efficiency of our proposed in-place update method through various experiments.

Optimization of Data Placement using Principal Component Analysis based Pareto-optimal method for Multi-Cloud Storage Environment

  • Latha, V.L. Padma;Reddy, N. Sudhakar;Babu, A. Suresh
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.248-256
    • /
    • 2021
  • Now that we're in the big data era, data has taken on a new significance as the storage capacity has exploded from trillion bytes to petabytes at breakneck pace. As the use of cloud computing expands and becomes more commonly accepted, several businesses and institutions are opting to store their requests and data there. Cloud storage's concept of a nearly infinite storage resource pool makes data storage and access scalable and readily available. The majority of them, on the other hand, favour a single cloud because of the simplicity and inexpensive storage costs it offers in the near run. Cloud-based data storage, on the other hand, has concerns such as vendor lock-in, privacy leakage and unavailability. With geographically dispersed cloud storage providers, multicloud storage can alleviate these dangers. One of the key challenges in this storage system is to arrange user data in a cost-effective and high-availability manner. A multicloud storage architecture is given in this study. Next, a multi-objective optimization problem is defined to minimise total costs and maximise data availability at the same time, which can be solved using a technique based on the non-dominated sorting genetic algorithm II (NSGA-II) and obtain a set of non-dominated solutions known as the Pareto-optimal set.. When consumers can't pick from the Pareto-optimal set directly, a method based on Principal Component Analysis (PCA) is presented to find the best answer. To sum it all up, thorough tests based on a variety of real-world cloud storage scenarios have proven that the proposed method performs as expected.

Technical analysis of Cloud storage for Cloud Computing (클라우드 컴퓨팅을 위한 클라우드 스토리지 기술 분석)

  • Park, Jeong-Su;Jung, Sung-Jae;Bae, Yu-Mi;Kyung, Ji-Hun;Sung, Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.757-760
    • /
    • 2012
  • Cloud storage system that cloud computing providers provides large amounts of data storage and processing of cloud computing is a key component. Large vendors (such as Facebook, YouTube, Google) in the mass sending of data through the network quickly and easily share photos, videos, documents, etc. from heterogeneous devices, such as tablets, smartphones, and the data that is stored in the cloud storage using was approached. At time, growth and development of the globally data, the cloud storage business model emerging is getting. Analysis new network storage cloud storage services concepts and technologies, including data manipulation, storage virtualization, data replication and duplication, security, cloud computing core.

  • PDF

A Study on Selection Factors of Personal Cloud Storage Service Using AHP (AHP를 활용한 개인 클라우드 스토리지 서비스 선택 요인에 관한 연구)

  • Jo, Hyeon;Cho, Hyegyeong;Kim, Younghee;Kim, Hayan;Jeon, Hyeon-Jeong;Lee, Jae Kwang
    • Journal of Information Technology Services
    • /
    • v.14 no.3
    • /
    • pp.197-215
    • /
    • 2015
  • Recently, many internet users are using cloud computing. Users can manage, store and share their data and information by using personal cloud storage. In this paper, we aim to figure out influencing factors on personal cloud storage selection. The causal relationship between factors were identified through a importance analysis by using AHP(Analytic Hierarchy Process). AHP is a structured technique for organizing and analyzing complex decisions, based on mathematics and psychology. Research model consists of upper factorsincluding system factor, service factor and user factor. 12 lower factors and 6 alternatives were also analyzed. Asa result, system factor of 3 upper factors was found as the most important factor. Purpose-coincidence, security andaccessibility were top 3 factors among lower factors. N drive showed top importance value. We also conducted ANOVAby classifying 4 groups according to gender, age, currently used cloud and cloud to use. The results of this researchcan be useful guidelines for cloud computing industry.

E2GSM: Energy Effective Gear-Shifting Mechanism in Cloud Storage System

  • You, Xindong;Han, GuangJie;Zhu, Chuan;Dong, Chi;Shen, Jian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.4681-4702
    • /
    • 2016
  • Recently, Massive energy consumption in Cloud Storage System has attracted great attention both in industry and research community. However, most of the solutions utilize single method to reduce the energy consumption only in one aspect. This paper proposed an energy effective gear-shifting mechanism (E2GSM) in Cloud Storage System to save energy consumption from multi-aspects. E2GSM is established on data classification mechanism and data replication management strategy. Data is classified according to its properties and then be placed into the corresponding zones through the data classification mechanism. Data replication management strategies determine the minimum replica number through a mathematical model and make decision on replica placement. Based on the above data classification mechanism and replica management strategies, the energy effective gear-shifting mechanism (E2GSM) can automatically gear-shifting among the nodes. Mathematical analytical model certificates our proposed E2GSM is energy effective. Simulation experiments based on Gridsim show that the proposed gear-shifting mechanism is cost effective. Compared to the other energy-saved mechanism, our E2GSM can save energy consumption substantially at the slight expense of performance loss while meeting the QoS of user.

Adaptively Secure Anonymous Identity-based Broadcast Encryption for Data Access Control in Cloud Storage Service

  • Chen, Liqing;Li, Jiguo;Zhang, Yichen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1523-1545
    • /
    • 2019
  • Cloud computing is now a widespread and economical option when data owners need to outsource or share their data. Designing secure and efficient data access control mechanism is one of the most challenging issues in cloud storage service. Anonymous broadcast encryption is a promising solution for its advantages in the respects of computation cost and communication overload. We bring forward an efficient anonymous identity-based broadcast encryption construction combined its application to the data access control mechanism in cloud storage service. The lengths for public parameters, user private key and ciphertext in the proposed scheme are all constant. Compared with the existing schemes, in terms of encrypting and decrypting computation cost, the construction of our scheme is more efficient. Furthermore, the proposed scheme is proved to achieve adaptive security against chosen-ciphertext attack adversaries in the standard model. Therefore, the proposed scheme is feasible for the system of data access control in cloud storage service.