• Title/Summary/Keyword: Cloud service evaluation

Search Result 90, Processing Time 0.021 seconds

A Framework for Design and Evaluation of Robot Industry Business Model based on Cloud Services in an Aging Society (고령화 사회에서 클라우드 서비스 기반 로봇산업 비즈니스 모델의 설계 및 평가를 위한 프레임워크)

  • Jeon, Hangoo;Seo, Kwang-Kyu
    • Journal of Digital Convergence
    • /
    • v.11 no.1
    • /
    • pp.441-446
    • /
    • 2013
  • It is expected to change for convergence robotic services according to emergence new communication technologies and cloud computing, etc. Robot industry is evaluated the biggest filed that is possibility to convergence of new IT technology. This paper presents a design framework for robot industry business model on cloud services through the cloud computing and environment of robot industry, features and provide valuable of cloud-based robot service, analysis of customer needs and value chain in the market in an aging society. In addition, we describe the evolution path of the proposed business model in terms of technology development and market. This study is expected to help that cloud and robot services companies when establishing new service model development and marketing strategy.

Performance Evaluation of Microservers to drive for Cloud Computing Applications (클라우드 컴퓨팅 응용 구동을 위한 마이크로서버 성능평가)

  • Myeong-Hoon Oh
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.85-91
    • /
    • 2023
  • In order to utilize KOSMOS, the performance evaluation results are presented in this paper with CloudSuite, an application service-based benchmark program in the cloud computing area. CloudSuite offers several distinct applications as cloud services in two parts: offline applications and online applications on containers. In comparison with other microservers which have similar hardware specifications of KOSMOS, it was observed that KOSMOS was superior in all CloudSuite benchmark applications. KOSMOS also showed higher performance than Intel Xeon CPU-based servers in an offline application. KOSMOS reduced completion time during executing Graph Analytics by 30.3% and 72.3% compared to two Intel Xeon CPU-based servers in an experimental configuration of multiple nodes in KOSMOS.

An Improved Privacy Preserving Construction for Data Integrity Verification in Cloud Storage

  • Xia, Yingjie;Xia, Fubiao;Liu, Xuejiao;Sun, Xin;Liu, Yuncai;Ge, Yi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.10
    • /
    • pp.3607-3623
    • /
    • 2014
  • The increasing demand in promoting cloud computing in either business or other areas requires more security of a cloud storage system. Traditional cloud storage systems fail to protect data integrity information (DII), when the interactive messages between the client and the data storage server are sniffed. To protect DII and support public verifiability, we propose a data integrity verification scheme by deploying a designated confirmer signature DCS as a building block. The DCS scheme strikes the balance between public verifiable signatures and zero-knowledge proofs which can address disputes between the cloud storage server and any user, whoever acting as a malicious player during the two-round verification. In addition, our verification scheme remains blockless and stateless, which is important in conducting a secure and efficient cryptosystem. We perform security analysis and performance evaluation on our scheme, and compared with the existing schemes, the results show that our scheme is more secure and efficient.

Evaluation of Geo-based Image Fusion on Mobile Cloud Environment using Histogram Similarity Analysis

  • Lee, Kiwon;Kang, Sanggoo
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • Mobility and cloud platform have become the dominant paradigm to develop web services dealing with huge and diverse digital contents for scientific solution or engineering application. These two trends are technically combined into mobile cloud computing environment taking beneficial points from each. The intention of this study is to design and implement a mobile cloud application for remotely sensed image fusion for the further practical geo-based mobile services. In this implementation, the system architecture consists of two parts: mobile web client and cloud application server. Mobile web client is for user interface regarding image fusion application processing and image visualization and for mobile web service of data listing and browsing. Cloud application server works on OpenStack, open source cloud platform. In this part, three server instances are generated as web server instance, tiling server instance, and fusion server instance. With metadata browsing of the processing data, image fusion by Bayesian approach is performed using functions within Orfeo Toolbox (OTB), open source remote sensing library. In addition, similarity of fused images with respect to input image set is estimated by histogram distance metrics. This result can be used as the reference criterion for user parameter choice on Bayesian image fusion. It is thought that the implementation strategy for mobile cloud application based on full open sources provides good points for a mobile service supporting specific remote sensing functions, besides image fusion schemes, by user demands to expand remote sensing application fields.

A Study of the Systems Quality Effect on the Intention to Use of Cloud Computing Services in Information Center (정보센터 시스템 품질이 클라우드 서비스 이용의도에 미치는 영향 연구)

  • Yoon, Jung-Hyeon
    • Journal of the Korean Society for information Management
    • /
    • v.28 no.4
    • /
    • pp.49-63
    • /
    • 2011
  • The purpose of this study is to identify the new roles and services of information center that is affected by changing information technology so called cloud computing service. Using Information Technology acceptance model, hypotheses were developed to find relationships among intention to use of a cloud service, perceived usefulness, perceived easy of use and three system quality evaluation factors such as data safety, network response time, and system accessibility. The hypotheses have been tested with 114 user surveys. This study presents the relationship between certain attitude and intention to use variables and system accessibility applying clouding service. The result of this research gives an insight of the evaluation and a guideline for the implementation of cloud computing services in information centers.

Cost Efficient Virtual Machine Brokering in Cloud Computing (가격 효율적인 클라우드 가상 자원 중개 기법에 대한 연구)

  • Kang, Dong-Ki;Kim, Seong-Hwan;Youn, Chan-Hyun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.7
    • /
    • pp.219-230
    • /
    • 2014
  • In the cloud computing environment, cloud service users purchase and use the virtualized resources from cloud resource providers on a pay as you go manner. Typically, there are two billing plans for computing resource allocation adopted by large cloud resource providers such as Amazon, Gogrid, and Microsoft, on-demand and reserved plans. Reserved Virtual Machine(VM) instance is provided to users based on the lengthy allocation with the cheaper price than the one of on-demand VM instance which is based on shortly allocation. With the proper mixture allocation of reserved and on-demand VM corresponding to users' requests, cloud service providers are able to reduce the resource allocation cost. To do this, prior researches about VM allocation scheme have been focused on the optimization approach with the users' request prediction techniques. However, it is difficult to predict the expected demands exactly because there are various cloud service users and the their request patterns are heavily fluctuated in reality. Moreover, the previous optimization processing techniques might require unacceptable huge time so it is hard to apply them to the current cloud computing system. In this paper, we propose the cloud brokering system with the adaptive VM allocation schemes called A3R(Adaptive 3 Resource allocation schemes) that do not need any optimization processes and kinds of prediction techniques. By using A3R, the VM instances are allocated to users in response to their service demands adaptively. We demonstrate that our proposed schemes are able to reduce the resource use cost significantly while maintaining the acceptable Quality of Service(QoS) of cloud service users through the evaluation results.

Performance Evaluation of IoT Cloud Platforms for Smart Buildings (스마트 빌딩을 위한 IoT 클라우드 플랫폼의 성능 평가)

  • Park, Jung Kyu;Park, Eun Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.664-671
    • /
    • 2020
  • A Smart Building, one that uses automated processes to control its operations, refers in this study to one that uses both Internet of Things (IoT) devices and cloud services software. Cloud service providers (e.g. Amazon, Google, and Microsoft) have recently providedIoT cloud platform application services on IoT devices. According to Postscapes, there are now 152 IoT cloud platforms. Choosing one for a smart building is challenging. We selected Microsoft Azure IoT Hub and Amazon's AWS (Amazon Web Services) IoT. The two platforms were evaluated and selected from a smart building perspective. Each prototype was evaluated on two different IoTplatforms, assuming a typical smart building scenario. The selection was based on information and experience gained from developing the prototype system using the IoT cloud platform. The assessment made in this evaluation may be used to select an IoTcloud platform for smart buildings in the future.

Design and Evaluation of a Hierarchical Hybrid Content Delivery Scheme using Bloom Filter in Vehicular Cloud Environments (차량 클라우드 환경에서 블룸 필터를 이용한 계층적 하이브리드 콘텐츠 전송 방법의 설계 및 평가)

  • Bae, Ihn-Han
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1597-1608
    • /
    • 2016
  • Recently, a number of solutions were proposed to address the challenges and issues of vehicular networks. Vehicular Cloud Computing (VCC) is one of the solutions. The vehicular cloud computing is a new hybrid technology that has a remarkable impact on traffic management and road safety by instantly using vehicular resources. In this paper, we study an important vehicular cloud service, content-based delivery, that allows future vehicular cloud applications to store, share and search data totally within the cloud. We design a VCC-based system architecture for efficient sharing of vehicular contents, and propose a Hierarchical Hybrid Content Delivery scheme using Bloom Filter (H2CDBF) for efficient vehicular content delivery in Vehicular Ad-hoc Networks (VANETs). The performance of the proposed H2CDBF is evaluated through an analytical model, and is compared to the proactive content discovery scheme, Bloom-Filter Routing (BFR).

Method to Evaluate and Enhance Reusability of Cloud Services (클라우드 서비스의 재사용성 평가 및 향상 기법)

  • Oh, Sang-Hun;La, Hyun-Jung;Kim, Soo-Dong
    • The KIPS Transactions:PartD
    • /
    • v.19D no.1
    • /
    • pp.49-62
    • /
    • 2012
  • In cloud computing, service providers develop and deploy services with common and reusable features among various applications, service consumers locate and reuse them in building their applications. Hence, reusability is a key intrinsic characteristic of cloud services. Services with high reusability would yield high return-on-investment. Cloud services have characteristics which do not appear in conventional programming paradigms, existing quality models for software reusability would not applicable to services. In this paper, we propose a reusability evaluation suite for cloud services, which includes quality attributes and metrics. A case study is presented to show its applicability.

Integrating Resilient Tier N+1 Networks with Distributed Non-Recursive Cloud Model for Cyber-Physical Applications

  • Okafor, Kennedy Chinedu;Longe, Omowunmi Mary
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.7
    • /
    • pp.2257-2285
    • /
    • 2022
  • Cyber-physical systems (CPS) have been growing exponentially due to improved cloud-datacenter infrastructure-as-a-service (CDIaaS). Incremental expandability (scalability), Quality of Service (QoS) performance, and reliability are currently the automation focus on healthy Tier 4 CDIaaS. However, stable QoS is yet to be fully addressed in Cyber-physical data centers (CP-DCS). Also, balanced agility and flexibility for the application workloads need urgent attention. There is a need for a resilient and fault-tolerance scheme in terms of CPS routing service including Pod cluster reliability analytics that meets QoS requirements. Motivated by these concerns, our contributions are fourfold. First, a Distributed Non-Recursive Cloud Model (DNRCM) is proposed to support cyber-physical workloads for remote lab activities. Second, an efficient QoS stability model with Routh-Hurwitz criteria is established. Third, an evaluation of the CDIaaS DCN topology is validated for handling large-scale, traffic workloads. Network Function Virtualization (NFV) with Floodlight SDN controllers was adopted for the implementation of DNRCM with embedded rule-base in Open vSwitch engines. Fourth, QoS evaluation is carried out experimentally. Considering the non-recursive queuing delays with SDN isolation (logical), a lower queuing delay (19.65%) is observed. Without logical isolation, the average queuing delay is 80.34%. Without logical resource isolation, the fault tolerance yields 33.55%, while with logical isolation, it yields 66.44%. In terms of throughput, DNRCM, recursive BCube, and DCell offered 38.30%, 36.37%, and 25.53% respectively. Similarly, the DNRCM had an improved incremental scalability profile of 40.00%, while BCube and Recursive DCell had 33.33%, and 26.67% respectively. In terms of service availability, the DNRCM offered 52.10% compared with recursive BCube and DCell which yielded 34.72% and 13.18% respectively. The average delays obtained for DNRCM, recursive BCube, and DCell are 32.81%, 33.44%, and 33.75% respectively. Finally, workload utilization for DNRCM, recursive BCube, and DCell yielded 50.28%, 27.93%, and 21.79% respectively.