• Title/Summary/Keyword: Cloud applications

Search Result 483, Processing Time 0.019 seconds

Performance Evaluation and Analysis on Single and Multi-Network Virtualization Systems with Virtio and SR-IOV (가상화 시스템에서 Virtio와 SR-IOV 적용에 대한 단일 및 다중 네트워크 성능 평가 및 분석)

  • Jaehak Lee;Jongbeom Lim;Heonchang Yu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.2
    • /
    • pp.48-59
    • /
    • 2024
  • As functions that support virtualization on their own in hardware are developed, user applications having various workloads are operating efficiently in the virtualization system. SR-IOV is a virtualization support function that takes direct access to PCI devices, thus giving a high I/O performance by minimizing the need for hypervisor or operating system interventions. With SR-IOV, network I/O acceleration can be realized in virtualization systems that have relatively long I/O paths compared to bare-metal systems and frequent context switches between the user area and kernel area. To take performance advantages of SR-IOV, network resource management policies that can derive optimal network performance when SR-IOV is applied to an instance such as a virtual machine(VM) or container are being actively studied.This paper evaluates and analyzes the network performance of SR-IOV implementing I/O acceleration is compared with Virtio in terms of 1) network delay, 2) network throughput, 3) network fairness, 4) performance interference, and 5) multi-network. The contributions of this paper are as follows. First, the network I/O process of Virtio and SR-IOV was clearly explained in the virtualization system, and second, the evaluation results of the network performance of Virtio and SR-IOV were analyzed based on various performance metrics. Third, the system overhead and the possibility of optimization for the SR-IOV network in a virtualization system with high VM density were experimentally confirmed. The experimental results and analysis of the paper are expected to be referenced in the network resource management policy for virtualization systems that operate network-intensive services such as smart factories, connected cars, deep learning inference models, and crowdsourcing.

Analysis of Industry-academia-research Cooperation Networks in the Field of Artificial Intelligence (인공지능 산·학·연 협력 공동연구 네트워크 분석)

  • Junghwan Lee;Seongsu Jang
    • Information Systems Review
    • /
    • v.26 no.2
    • /
    • pp.155-167
    • /
    • 2024
  • This study recognized the importance of joint research in the field of artificial intelligence and analyzed the characteristics of the industry-academic-research technological cooperation ecosystem focusing on patents from the perspective of the Techno-Economic Segment (TES). To this end, economic entities such as companies, universities, and research institutes within the ecosystem were identified for 7,062 joint research projects out of 113,289 artificial intelligence patents over the past 10 years filed in IP5 countries since 2012. Next, this study identified the topics of technological cooperation and the characteristics of cooperation. As a result of the analysis, technological cooperation is increasing, and the frequency of all types of cooperation was high in industry-to-industry (40%) and industry-to-university (25.2%) relationships. Here, this study confirmed that the role of universities is being strengthened, with an increase in the ratio of companies with strengths in funding and analytical data, industry and universities with excellent research personnel (9.8%), and cooperation between universities (1.9%). In addition, as a result of identifying collaborative patent research areas of interest and collaborative relationships through topic modeling and network analysis, overall similar research interests were derived regardless of the type of cooperation, and applications such as autonomous driving, edge computing, cloud, marketing, and consumer behavior analysis were derived. It was confirmed that the scope of research was expanding, collaborating entities were becoming more diverse, and a large-scale network including Chinese-centered universities was emerging.

Visualizing the Results of Opinion Mining from Social Media Contents: Case Study of a Noodle Company (소셜미디어 콘텐츠의 오피니언 마이닝결과 시각화: N라면 사례 분석 연구)

  • Kim, Yoosin;Kwon, Do Young;Jeong, Seung Ryul
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.89-105
    • /
    • 2014
  • After emergence of Internet, social media with highly interactive Web 2.0 applications has provided very user friendly means for consumers and companies to communicate with each other. Users have routinely published contents involving their opinions and interests in social media such as blogs, forums, chatting rooms, and discussion boards, and the contents are released real-time in the Internet. For that reason, many researchers and marketers regard social media contents as the source of information for business analytics to develop business insights, and many studies have reported results on mining business intelligence from Social media content. In particular, opinion mining and sentiment analysis, as a technique to extract, classify, understand, and assess the opinions implicit in text contents, are frequently applied into social media content analysis because it emphasizes determining sentiment polarity and extracting authors' opinions. A number of frameworks, methods, techniques and tools have been presented by these researchers. However, we have found some weaknesses from their methods which are often technically complicated and are not sufficiently user-friendly for helping business decisions and planning. In this study, we attempted to formulate a more comprehensive and practical approach to conduct opinion mining with visual deliverables. First, we described the entire cycle of practical opinion mining using Social media content from the initial data gathering stage to the final presentation session. Our proposed approach to opinion mining consists of four phases: collecting, qualifying, analyzing, and visualizing. In the first phase, analysts have to choose target social media. Each target media requires different ways for analysts to gain access. There are open-API, searching tools, DB2DB interface, purchasing contents, and so son. Second phase is pre-processing to generate useful materials for meaningful analysis. If we do not remove garbage data, results of social media analysis will not provide meaningful and useful business insights. To clean social media data, natural language processing techniques should be applied. The next step is the opinion mining phase where the cleansed social media content set is to be analyzed. The qualified data set includes not only user-generated contents but also content identification information such as creation date, author name, user id, content id, hit counts, review or reply, favorite, etc. Depending on the purpose of the analysis, researchers or data analysts can select a suitable mining tool. Topic extraction and buzz analysis are usually related to market trends analysis, while sentiment analysis is utilized to conduct reputation analysis. There are also various applications, such as stock prediction, product recommendation, sales forecasting, and so on. The last phase is visualization and presentation of analysis results. The major focus and purpose of this phase are to explain results of analysis and help users to comprehend its meaning. Therefore, to the extent possible, deliverables from this phase should be made simple, clear and easy to understand, rather than complex and flashy. To illustrate our approach, we conducted a case study on a leading Korean instant noodle company. We targeted the leading company, NS Food, with 66.5% of market share; the firm has kept No. 1 position in the Korean "Ramen" business for several decades. We collected a total of 11,869 pieces of contents including blogs, forum contents and news articles. After collecting social media content data, we generated instant noodle business specific language resources for data manipulation and analysis using natural language processing. In addition, we tried to classify contents in more detail categories such as marketing features, environment, reputation, etc. In those phase, we used free ware software programs such as TM, KoNLP, ggplot2 and plyr packages in R project. As the result, we presented several useful visualization outputs like domain specific lexicons, volume and sentiment graphs, topic word cloud, heat maps, valence tree map, and other visualized images to provide vivid, full-colored examples using open library software packages of the R project. Business actors can quickly detect areas by a swift glance that are weak, strong, positive, negative, quiet or loud. Heat map is able to explain movement of sentiment or volume in categories and time matrix which shows density of color on time periods. Valence tree map, one of the most comprehensive and holistic visualization models, should be very helpful for analysts and decision makers to quickly understand the "big picture" business situation with a hierarchical structure since tree-map can present buzz volume and sentiment with a visualized result in a certain period. This case study offers real-world business insights from market sensing which would demonstrate to practical-minded business users how they can use these types of results for timely decision making in response to on-going changes in the market. We believe our approach can provide practical and reliable guide to opinion mining with visualized results that are immediately useful, not just in food industry but in other industries as well.