• Title/Summary/Keyword: Cloud applications

Search Result 483, Processing Time 0.031 seconds

An Agroclimatic Data Retrieval and Analysis System for Microcomputer Users(CLIDAS) (퍼스컴을 이용한 농업기후자료 검색 및 분석시스템)

  • 윤진일;김영찬
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.3
    • /
    • pp.253-263
    • /
    • 1993
  • Climatological informations have not been fully utilized by agricultural research and extension workers in Korea due mainly to inaccessbilty to the archived climate data. This study was initiated to improve access to historical climate data gathered from 72 weather stations of Korea Meteorological Administration for agricultural applications by using a microcomputer-based methodology. The climatological elements include daily values of average, maximum and minimum temperature, relative humidity, average and maximum wind speed, wind direction, evaporation, precipitation, sunshine duration and cloud amount. The menu-driven, user-friendly data retrieval system(CLIDAS) provides quick summaries of the data values on a daily, weekly and monthly basis and selective retrieval of weather records meeting certain user specified critical conditions. Growing degree days and potential evapotranspiration data are derived from the daily climatic data, too. Data reports can be output to the computer screen, a printer or ASCII data files. CLIDAS can be run on any IBM compatible machines with Video Graphics Array card. To run the system with the whole database, more than 50 Mb hard disk space should be available. The system can be easily upgraded for further expansion of functions due to the module-structured design.

  • PDF

Research on text mining based malware analysis technology using string information (문자열 정보를 활용한 텍스트 마이닝 기반 악성코드 분석 기술 연구)

  • Ha, Ji-hee;Lee, Tae-jin
    • Journal of Internet Computing and Services
    • /
    • v.21 no.1
    • /
    • pp.45-55
    • /
    • 2020
  • Due to the development of information and communication technology, the number of new / variant malicious codes is increasing rapidly every year, and various types of malicious codes are spreading due to the development of Internet of things and cloud computing technology. In this paper, we propose a malware analysis method based on string information that can be used regardless of operating system environment and represents library call information related to malicious behavior. Attackers can easily create malware using existing code or by using automated authoring tools, and the generated malware operates in a similar way to existing malware. Since most of the strings that can be extracted from malicious code are composed of information closely related to malicious behavior, it is processed by weighting data features using text mining based method to extract them as effective features for malware analysis. Based on the processed data, a model is constructed using various machine learning algorithms to perform experiments on detection of malicious status and classification of malicious groups. Data has been compared and verified against all files used on Windows and Linux operating systems. The accuracy of malicious detection is about 93.5%, the accuracy of group classification is about 90%. The proposed technique has a wide range of applications because it is relatively simple, fast, and operating system independent as a single model because it is not necessary to build a model for each group when classifying malicious groups. In addition, since the string information is extracted through static analysis, it can be processed faster than the analysis method that directly executes the code.

A Study of 3D Modeling of Compressed Urban LiDAR Data Using VRML (VRML을 이용한 도심지역 LiDAR 압축자료의 3차원 표현)

  • Jang, Young-Woon;Choi, Yun-Woong;Cho, Gi-Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.2
    • /
    • pp.3-8
    • /
    • 2011
  • Recently, the demand for enterprise for service map providing and portal site services of a 3D virtual city model for public users has been expanding. Also, accuracy of the data, transfer rate and the update for the update for the lapse of time emerge are considered as more impertant factors, by providing 3D information with the web or mobile devices. With the latest technology, we have seen various 3D data through the web. With the VRML progressing actively, because it can provide a virtual display of the world and all aspects of interaction with web. It offers installation of simple plug-in without extra cost on the web. LiDAR system can obtain spatial data easily and accurately, as supprted by numerous researches and applications. However, in general, LiDAR data is obtained in the form of an irregular point cloud. So, in case of using data without converting, high processor is needed for presenting 2D forms from point data composed of 3D data and the data increase. This study expresses urban LiDAR data in 3D, 2D raster data that was applied by compressing algorithm that was used for solving the problems of large storage space and processing. For expressing 3D, algorithm that converts compressed LiDAR data into code Suited to VRML was made. Finally, urban area was expressed in 3D with expressing ground and feature separately.

A Development Plan for Co-creation-based Smart City through the Trend Analysis of Internet of Things (사물인터넷 동향분석을 통한 Co-creation기반 스마트시티 구축 방안)

  • Park, Ju Seop;Hong, Soon-Goo;Kim, Na Rang
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.21 no.4
    • /
    • pp.67-78
    • /
    • 2016
  • Recently many countries around the world are actively promoting smart city projects to address various urban problems such as traffic congestion, housing shortage, and energy scarcity. Due to development of the Internet of Things (IoT), the development of a smart city with sustainability, convenience, and environment-friendliness was enabled through the effective control and reuse of urban resources. The purpose of this study is to analyze the technical trends of IoT and present a development plan for smart city which is one of the applications of the IoT. To this end, the news articles of the Electronic Times between 2013 and 2015were analyzed using the text mining technique and smart city development cases of other countries were investigated. The analysis results revealed the close relationships of big data, cloud, platforms, and sensors with smart city. For the successful development of a smart city, first, all the interested parties in the city must work together to create new values throughout the entire process of value chain. Second, they must utilize big data and disclose public data more actively than they are doing now. This study has made academic contribution in that it has presented a big data analysis method and stimulated follow-up studies. For the practical contribution, the results of this study provided useful data for the policy making of local governments and administrative agencies for smart city development. This study may have limitations in the incorporation of the total trends because only the news articles of the Electronic Times were selected to analyze the technical trends of the IoT.

Design and Implementation of HPC Job Management Framework for Computational Scientific Simulation (계산과학 시뮬레이션을 위한 HPC 작업 관리 프레임워크의 설계 및 구현)

  • Yu, Jung-Lok;Kim, Han-Gi;Byun, Hee-Jung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.554-557
    • /
    • 2016
  • Recently, supercomputer has been increasingly adopted as a computing environment for scientific simulation as well as education, healthcare and national defence. Especially, supercomputing system with heterogeneous computing resources is gaining resurgence of interest as a next-generation problem solving environment, allowing theoretical and/or experimental research in various fields to be free of time and spatial limits. However, traditional supercomputing services have only been handled through a simple form of command-line based console, which leads to the critical limit of accessibility and usability of heterogeneous computing resources. To address this problem, in this paper, we provide the design and implementation of web-based HPC (High Performance Computing) job management framework for computational scientific simulation. The proposed framework has highly extensible design principles, providing the abstraction interfaces of job scheduler (as well as bundle scheduler plug-ins for LoadLeveler, Sun Grid Engine, OpenPBS scheduler) in order to easily incorporate the broad spectrum of heterogeneous computing resources such as cluster, computing cloud and grid. We also present the detailed specification of HTTP standard based RESTful endpoints, which manage simulation job's life-cycles such as job creation, submission, control and status monitoring, etc., enabling various 3rd-party applications to be newly created on top of the proposed framework.

  • PDF

A Study on Smart Home Service System Design to Support Aging in Place (Aging in Place 지원을 위한 스마트 홈 서비스 시스템 설계에 관한 연구)

  • Sim, Sungho
    • Journal of Digital Convergence
    • /
    • v.17 no.12
    • /
    • pp.249-254
    • /
    • 2019
  • According to the recent expansion of the network environment, the spread of smart devices is continuously increasing. With the spread of smart devices such as smart phones, smart pads and wearables, changes are taking place in smart technologies and IT convergence technologies. The development of smart technology is a key element of the 4th industrial technology. The Fourth Industrial Revolution expanded the new service-based industry by adding intelligence to residential, industrial and production environments using IT convergence and smart devices. Research on providing various services using smart technologies, such as smart home, smart factory, smart farm, and smart healthcare, is being conducted in variety. In particular, There is a sharp rise in smart homes due to the proliferation of IoT devices and the growth of sensor technology, control technology, applications, data management, and cloud services. Smart home services using smart technology provide residents with convenient, beneficial services and environments. Smart home service has complemented the existing home network service, but there still are flaws to be modified. In other words, the spread of smart devices, the development of service provider-oriented services, and the interlocking of services have limitations in providing services in consideration of user environment and user state. In order to solve this problem, this study proposes a smart home service system that considers the situation of the elderly.

Utilization of Unmanned Aerial Scanner for Investigation and Management of Forest Area (산림지역 조사 및 관리를 위한 무인항공 스캐너의 활용)

  • Lee, Keun-Wang;Park, Joon-Kyu
    • Journal of Digital Convergence
    • /
    • v.17 no.11
    • /
    • pp.189-194
    • /
    • 2019
  • Forest investigation is the basic data for forest preservation and forest resource development, and periodical data acquisition and management have been performed. However, most of the current forest investigations in Korea are surveys to grasp the current status of forests, and various applications have not been made as geospatial information. In this study, the unmanned aerial scanner was used to acquire and process data in the forest area and to present an efficient forest survey method through analysis of the results. Unmanned aerial scanners can extract ground below vegetation, effectively creating DEM for forest management. It can be used as geospatial information for forest investigation and management by generating accurate topographical data that is impossible in conventional photogrammetry. It can also be used to measure distances between power lines and vegetation or manage transmission lines in forest areas. The accurate vertical distance measurement for vegetation surveys can greatly improve the accuracy of labor measurement and work efficiency compared to conventional methods. In the future, the use of unmanned aerial scanners will improve the data acquisition efficiency in forest areas, and will contribute to improved accuracy and economic feasibility compared to conventional methods.

Implementation of Dynamic Situation Authentication System for Accessing Medical Information (의료정보 접근을 위한 동적상황인증시스템의 구현)

  • Ham, Gyu-Sung;Seo, Own-jeong;Jung, Hoill;Joo, Su-Chong
    • Journal of Internet Computing and Services
    • /
    • v.19 no.6
    • /
    • pp.31-40
    • /
    • 2018
  • With the development of IT technology recently, medical information systems are being constructed in an integrated u-health environment through cloud services, IoT technologies, and mobile applications. These kinds of medical information systems should provide the medical staff with authorities to access patients' medical information for emergency status treatments or therapeutic purposes. Therefore, in the medical information systems, the reliable and prompt authentication processes are necessary to access the biometric information and the medical information of the patients in charge of the medical staff. However, medical information systems are accessing with simple and static user authentication mechanism using only medical ID / PWD in the present system environment. For this reason, in this paper, we suggest a dynamic situation authentication mechanism that provides transparency of medical information access including various authentication factors considering patient's emergency status condition and dynamic situation authentication system supporting it. Our dynamic Situation Authentication is a combination of user authentication and mobile device authentication, which includes various authentication factor attributes such as emergency status, role of medical staff, their working hours, and their working positions and so forth. We designed and implemented a dynamic situation authentication system including emergency status decision, dynamic situation authentication, and authentication support DB construction. Finally, in order to verify the serviceability of the suggested dynamic situation authentication system, the medical staffs download the mobile application from the medical information server to the medical staff's own mobile device together with the dynamic situation authentication process and the permission to access medical information to the patient and showed access to medical information.

A Real-time Correction of the Underestimation Noise for GK2A Daily NDVI (GK2A 일단위 NDVI의 과소추정 노이즈 실시간 보정)

  • Lee, Soo-Jin;Youn, Youjeong;Sohn, Eunha;Kim, Mija;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1301-1314
    • /
    • 2022
  • Normalized Difference Vegetation Index (NDVI) is utilized as an indicator to represent the vegetation condition on the land surface in various applications such as land cover, crop yield, agricultural drought, soil moisture, and forest disaster. However, satellite optical sensors for visible and infrared rays cannot see through the clouds, so the NDVI of the cloud pixel is not a valid value for the land surface. This study proposed a real-time correction of the underestimation noise for GEO-KOMPSAT-2A (GK2A) daily NDVI and made sure its feasibility through the quantitative comparisons with Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI and the qualitative interpretation of time-series changes. The underestimation noise was effectively corrected by the procedures such as the time-series correction considering vegetation phenology, the outlier removal using long-term climatology, and the gap filling using rigorous statistical methods. The correlation with MODIS NDVI was higher, and the difference was lower, showing a 32.7% improvement compared to the original NDVI product. The proposed method has an extensibility for use in other satellite products with some modification.

Computer Vision-based Continuous Large-scale Site Monitoring System through Edge Computing and Small-Object Detection

  • Kim, Yeonjoo;Kim, Siyeon;Hwang, Sungjoo;Hong, Seok Hwan
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1243-1244
    • /
    • 2022
  • In recent years, the growing interest in off-site construction has led to factories scaling up their manufacturing and production processes in the construction sector. Consequently, continuous large-scale site monitoring in low-variability environments, such as prefabricated components production plants (precast concrete production), has gained increasing importance. Although many studies on computer vision-based site monitoring have been conducted, challenges for deploying this technology for large-scale field applications still remain. One of the issues is collecting and transmitting vast amounts of video data. Continuous site monitoring systems are based on real-time video data collection and analysis, which requires excessive computational resources and network traffic. In addition, it is difficult to integrate various object information with different sizes and scales into a single scene. Various sizes and types of objects (e.g., workers, heavy equipment, and materials) exist in a plant production environment, and these objects should be detected simultaneously for effective site monitoring. However, with the existing object detection algorithms, it is difficult to simultaneously detect objects with significant differences in size because collecting and training massive amounts of object image data with various scales is necessary. This study thus developed a large-scale site monitoring system using edge computing and a small-object detection system to solve these problems. Edge computing is a distributed information technology architecture wherein the image or video data is processed near the originating source, not on a centralized server or cloud. By inferring information from the AI computing module equipped with CCTVs and communicating only the processed information with the server, it is possible to reduce excessive network traffic. Small-object detection is an innovative method to detect different-sized objects by cropping the raw image and setting the appropriate number of rows and columns for image splitting based on the target object size. This enables the detection of small objects from cropped and magnified images. The detected small objects can then be expressed in the original image. In the inference process, this study used the YOLO-v5 algorithm, known for its fast processing speed and widely used for real-time object detection. This method could effectively detect large and even small objects that were difficult to detect with the existing object detection algorithms. When the large-scale site monitoring system was tested, it performed well in detecting small objects, such as workers in a large-scale view of construction sites, which were inaccurately detected by the existing algorithms. Our next goal is to incorporate various safety monitoring and risk analysis algorithms into this system, such as collision risk estimation, based on the time-to-collision concept, enabling the optimization of safety routes by accumulating workers' paths and inferring the risky areas based on workers' trajectory patterns. Through such developments, this continuous large-scale site monitoring system can guide a construction plant's safety management system more effectively.

  • PDF