• Title/Summary/Keyword: Cloud applications

Search Result 483, Processing Time 0.033 seconds

Analysis of Data Isolation Methods for Secure Web Site Development in a Multi-Tenancy Environment (멀티테넌시 환경에서 안전한 웹 사이트 개발을 위한 데이터격리 방법 분석)

  • Jeom Goo Kim
    • Convergence Security Journal
    • /
    • v.24 no.1
    • /
    • pp.35-42
    • /
    • 2024
  • Multi-tenancy architecture plays a crucial role in cloud-based services and applications, and data isolation within such environments has emerged as a significant security challenge. This paper investigates various data isolation methods including schema-based isolation, logical isolation, and physical isolation, and compares their respective advantages and disadvantages. It evaluates the practical application and effectiveness of these data isolation methods, proposing security considerations and selection criteria for data isolation in the development of multi-tenant websites. This paper offers important guidance for developers, architects, and system administrators aiming to enhance data security in multi-tenancy environments. It suggests a foundational framework for the design and implementation of efficient and secure multi-tenant websites. Additionally, it provides insights into how the choice of data isolation methods impacts system performance, scalability, maintenance ease, and overall security, exploring ways to improve the security and stability of multi-tenant systems.

The Impact of Digital Transformation on Corporate Performance: Based on Shanghai and Shenzhen A-Share Listed Companies

  • Wang HuiJun;Tumennast Erdenebold
    • Asia-Pacific Journal of Business
    • /
    • v.15 no.3
    • /
    • pp.17-45
    • /
    • 2024
  • Purpose - This paper studies the impact of digital transformation on corporate performance based on the stakeholder and dynamic capability theories. Digital transformation is divided into digital technologies (big data, artificial intelligence, blockchain, and cloud computing) and digital technology practical applications. Corporate performance includes financial performance and non-financial performance. The mechanism of dynamic capabilities (innovation capability, absorptive capacity, and adaptive capacity) is further explored. Design/methodology/approach - A fixed-effects model is used to construct a panel data of China's Shanghai and Shenzhen A-share listed companies from 2011 to 2023, and Stata is used for empirical analysis. Findings - In general, digital transformation directly improves corporate performance and indirectly promotes corporate performance through dynamic capabilities (innovation, absorptive capacity, and adaptive capacity). After robustness and endogeneity tests, the conclusion still support. In terms of subdivision, the two dimensions of digital transformation and the practical application of digital technology have different effects on corporate financial performance and non-financial performance. Research implications or Originality - Theoretically, the mechanism of digital transformation on corporate performance is fully and deeply explored, filling the research gap whiting this study. Additionally, the model is constructed using the innovation, absorption and adaptability of dynamic capabilities, providing a different perspective. Practically, it helps to alleviate the current situation of some companies "not wanting to transform" or "not daring to transform", and also clarifies how digital transformation can help companies use dynamic capabilities to improve performance. It provides a decision-making basis for government departments to promote the integration of digital economy and real economy, so that digital transformation can better empower and release corporate performance, thereby promoting the development of China's economy.

A Design of Smart Sensor Framework for Smart Home System Bsed on Layered Architecture (계층 구조에 기반을 둔 스마트 홈 시스템를 위한 스마트 센서 프레임워크의 설계)

  • Chung, Won-Ho;Kim, Yu-Bin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.4
    • /
    • pp.49-59
    • /
    • 2017
  • Smart sensing plays a key role in a variety of IoT applications, and its importance is growing more and more together with the development of artificial intelligence. Therefore the importance of smart sensors cannot be overemphasized. However, most studies related to smart sensors have been focusing on specific application purposes, for example, security, energy saving, monitoring, and there are not much effort on researches on how to efficiently configure various types of smart sensors to be needed in the future. In this paper, a component-based framework with hierarchical structure for efficient construction of smart sensor is proposed and its application to smart home is designed and implemented. The proposed method shows that various types of smart sensors to be appeared in the near future can be configured through the design and development of necessary components within the proposed software framework. In addition, since it has a layered architecture, the configuration of the smart sensor can be expanded by inserting the internal or external layers. In particular, it is possible to independently design the internal and external modules when designing an IoT application service through connection with the external device layer. A small-scale smart home system is designed and implemented using the proposed method, and a home cloud operating as an external layer, is further designed to accommodate and manage multiple smart homes. By developing and thus adding the components of each layer, it will be possible to efficiently extend the range of applications such as smart cars, smart buildings, smart factories an so on.

Violation Detection of Application Network QoS using Ontology in SDN Environment (SDN 환경에서 온톨로지를 활용한 애플리케이션 네트워크의 품질 위반상황 식별 방법)

  • Hwang, Jeseung;Kim, Ungsoo;Park, Joonseok;Yeom, Keunhyuk
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.6
    • /
    • pp.7-20
    • /
    • 2017
  • The advancement of cloud and big data and the considerable growth of traffic have increased the complexity and problems in the management inefficiency of existing networks. The software-defined networking (SDN) environment has been developed to solve this problem. SDN enables us to control network equipment through programming by separating the transmission and control functions of the equipment. Accordingly, several studies have been conducted to improve the performance of SDN controllers, such as the method of connecting existing legacy equipment with SDN, the packet management method for efficient data communication, and the method of distributing controller load in a centralized architecture. However, there is insufficient research on the control of SDN in terms of the quality of network-using applications. To support the establishment and change of the routing paths that meet the required network service quality, we require a mechanism to identify network requirements based on a contract for application network service quality and to collect information about the current network status and identify the violations of network service quality. This study proposes a method of identifying the quality violations of network paths through ontology to ensure the network service quality of applications and provide efficient services in an SDN environment.

Effects of Environmental Conditions on Vegetation Indices from Multispectral Images: A Review

  • Md Asrakul Haque;Md Nasim Reza;Mohammod Ali;Md Rejaul Karim;Shahriar Ahmed;Kyung-Do Lee;Young Ho Khang;Sun-Ok Chung
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.4
    • /
    • pp.319-341
    • /
    • 2024
  • The utilization of multispectral imaging systems (MIS) in remote sensing has become crucial for large-scale agricultural operations, particularly for diagnosing plant health, monitoring crop growth, and estimating plant phenotypic traits through vegetation indices (VIs). However, environmental factors can significantly affect the accuracy of multispectral reflectance data, leading to potential errors in VIs and crop status assessments. This paper reviewed the complex interactions between environmental conditions and multispectral sensors emphasizing the importance of accounting for these factors to enhance the reliability of reflectance data in agricultural applications.An overview of the fundamentals of multispectral sensors and the operational principles behind vegetation index (VI) computation was reviewed. The review highlights the impact of environmental conditions, particularly solar zenith angle (SZA), on reflectance data quality. Higher SZA values increase cloud optical thickness and droplet concentration by 40-70%, affecting reflectance in the red (-0.01 to 0.02) and near-infrared (NIR) bands (-0.03 to 0.06), crucial for VI accuracy. An SZA of 45° is optimal for data collection, while atmospheric conditions, such as water vapor and aerosols, greatly influence reflectance data, affecting forest biomass estimates and agricultural assessments. During the COVID-19 lockdown,reduced atmospheric interference improved the accuracy of satellite image reflectance consistency. The NIR/Red edge ratio and water index emerged as the most stable indices, providing consistent measurements across different lighting conditions. Additionally, a simulated environment demonstrated that MIS surface reflectance can vary 10-20% with changes in aerosol optical thickness, 15-30% with water vapor levels, and up to 25% in NIR reflectance due to high wind speeds. Seasonal factors like temperature and humidity can cause up to a 15% change, highlighting the complexity of environmental impacts on remote sensing data. This review indicated the importance of precisely managing environmental factors to maintain the integrity of VIs calculations. Explaining the relationship between environmental variables and multispectral sensors offers valuable insights for optimizing the accuracy and reliability of remote sensing data in various agricultural applications.

Automatic gasometer reading system using selective optical character recognition (관심 문자열 인식 기술을 이용한 가스계량기 자동 검침 시스템)

  • Lee, Kyohyuk;Kim, Taeyeon;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.1-25
    • /
    • 2020
  • In this paper, we suggest an application system architecture which provides accurate, fast and efficient automatic gasometer reading function. The system captures gasometer image using mobile device camera, transmits the image to a cloud server on top of private LTE network, and analyzes the image to extract character information of device ID and gas usage amount by selective optical character recognition based on deep learning technology. In general, there are many types of character in an image and optical character recognition technology extracts all character information in an image. But some applications need to ignore non-of-interest types of character and only have to focus on some specific types of characters. For an example of the application, automatic gasometer reading system only need to extract device ID and gas usage amount character information from gasometer images to send bill to users. Non-of-interest character strings, such as device type, manufacturer, manufacturing date, specification and etc., are not valuable information to the application. Thus, the application have to analyze point of interest region and specific types of characters to extract valuable information only. We adopted CNN (Convolutional Neural Network) based object detection and CRNN (Convolutional Recurrent Neural Network) technology for selective optical character recognition which only analyze point of interest region for selective character information extraction. We build up 3 neural networks for the application system. The first is a convolutional neural network which detects point of interest region of gas usage amount and device ID information character strings, the second is another convolutional neural network which transforms spatial information of point of interest region to spatial sequential feature vectors, and the third is bi-directional long short term memory network which converts spatial sequential information to character strings using time-series analysis mapping from feature vectors to character strings. In this research, point of interest character strings are device ID and gas usage amount. Device ID consists of 12 arabic character strings and gas usage amount consists of 4 ~ 5 arabic character strings. All system components are implemented in Amazon Web Service Cloud with Intel Zeon E5-2686 v4 CPU and NVidia TESLA V100 GPU. The system architecture adopts master-lave processing structure for efficient and fast parallel processing coping with about 700,000 requests per day. Mobile device captures gasometer image and transmits to master process in AWS cloud. Master process runs on Intel Zeon CPU and pushes reading request from mobile device to an input queue with FIFO (First In First Out) structure. Slave process consists of 3 types of deep neural networks which conduct character recognition process and runs on NVidia GPU module. Slave process is always polling the input queue to get recognition request. If there are some requests from master process in the input queue, slave process converts the image in the input queue to device ID character string, gas usage amount character string and position information of the strings, returns the information to output queue, and switch to idle mode to poll the input queue. Master process gets final information form the output queue and delivers the information to the mobile device. We used total 27,120 gasometer images for training, validation and testing of 3 types of deep neural network. 22,985 images were used for training and validation, 4,135 images were used for testing. We randomly splitted 22,985 images with 8:2 ratio for training and validation respectively for each training epoch. 4,135 test image were categorized into 5 types (Normal, noise, reflex, scale and slant). Normal data is clean image data, noise means image with noise signal, relfex means image with light reflection in gasometer region, scale means images with small object size due to long-distance capturing and slant means images which is not horizontally flat. Final character string recognition accuracies for device ID and gas usage amount of normal data are 0.960 and 0.864 respectively.

The Estimation of Gross Primary Productivity over North Korea Using MODIS FPAR and WRF Meteorological Data (MODIS 광합성유효복사흡수율과 WRF 기상자료를 이용한 북한지역의 총일차생산성 추정)

  • Do, Na-Young;Kang, Sin-Kyu;Myeong, Soo-Jeong;Chun, Tae-Hun;Lee, Ji-Hye;Lee, Chong-Bum
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.2
    • /
    • pp.215-226
    • /
    • 2012
  • NASA MODIS GPP provides a useful tool to monitor global terrestrial vegetation productivity. Two major problems of NASA GPP in regional applications are coarse spatial resolution ($1.25^{\circ}{\times}1^{\circ}$) of DAO meteorological data and cloud contamination of MODIS FPAR product. In this study, we improved the NASA GPP by using enhanced input data of high spatial resolution (3 km${\times}$3 km) WRF meteorological data and cloud-corrected FPAR over the North Korea. The improved GPP was utilized to investigate characteristics of GPP interannual variation and spatial patterns from 2000 to 2008. The GPP varied from 645 to 863 $gC\;m^{-2}\;y^{-1}$ in 2000 and 2008, respectively. Mixed forest showed the highest GPP (1,076 $gC\;m^{-2}\;y^{-1}$). Compared to NASA GPP (790 $gC\;m^{-2}\;y^{-1}$);FPAR enhancement increased GPP (861) but utilization of WRF data decreased GPP (710). Enhancements of both FPAR and meteorological input resulted in GPP increase (809) and the improvement was the greatest for mixed forest regions (+10.2%). The improved GPP showed better spatial heterogeneity reflecting local topography due to high resolution WRF data. It is remarkable that the improved and NASA GPPs showed distinctly different interannual variations with each other. Our study indicates improvement of NASA GPP by enhancing input variables is necessary to monitor region-scale terrestrial vegetation productivity.

Outlier Detection from High Sensitive Geiger Mode Imaging LIDAR Data retaining a High Outlier Ratio (높은 이상점 비율을 갖는 고감도 가이거모드 영상 라이다 데이터로부터 이상점 검출)

  • Kim, Seongjoon;Lee, Impyeong;Lee, Youngcheol;Jo, Minsik
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.5
    • /
    • pp.573-586
    • /
    • 2012
  • Point clouds acquired by a LIDAR(Light Detection And Ranging, also LADAR) system often contain erroneous points called outliers seeming not to be on physical surfaces, which should be carefully detected and eliminated before further processing for applications. Particularly in case of LIDAR systems employing with a Gieger-mode array detector (GmFPA) of high sensitivity, the outlier ratio is significantly high, which makes existing algorithms often fail to detect the outliers from such a data set. In this paper, we propose a method to discriminate outliers from a point cloud with high outlier ratio acquired by a GmFPA LIDAR system. The underlying assumption of this method is that a meaningful targe surface occupy at least two adjacent pixels and the ranges from these pixels are similar. We applied the proposed method to simulated LIDAR data of different point density and outlier ratio and analyzed the performance according to different thresholds and data properties. Consequently, we found that the outlier detection probabilities are about 99% in most cases. We also confirmed that the proposed method is robust to data properties and less sensitive to the thresholds. The method will be effectively utilized for on-line realtime processing and post-processing of GmFPA LIDAR data.

A Study on the Application of Standard Technology for Integrated Management of Water Hazard Information Platform (수재해 정보 플랫폼 통합관리를 위한 표준기술 적용방안)

  • KIM, Dong-Young;LEE, Jeong-Ju;CHAE, Hyo-Sok;HWANG, Eui-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.4
    • /
    • pp.119-130
    • /
    • 2015
  • In recent years, the attention on the applications of the national or international standards to water-related information technology in practice has more increased. In particular, as the demand on spatial information technology including content development, receiving, disposal and distribution has increased, the importance of standardization has been also emphasized. However, compared with attention and demand on standardization in spatial information technology, studies on development and application of standardization are still at the initial stage. Accordingly, this study attempted to investigate the trends of international standards developed and established by International Organization for Standardization(ISO) and Open Geospatial Consortium(OGC), and to derive the adaptable integrated management standard technology for water hazard information platform. For this, we investigated big data, NoSQL, and cloud technology for the observed data provision. Furthermore, OGC WxS standard technologies for spatial information web service and ISO standards for spatial information format were investigated. Based on these investigations, we examined the strategies and plans to apply and establish the standardization for information provision.

Big Data Based Dynamic Flow Aggregation over 5G Network Slicing

  • Sun, Guolin;Mareri, Bruce;Liu, Guisong;Fang, Xiufen;Jiang, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4717-4737
    • /
    • 2017
  • Today, smart grids, smart homes, smart water networks, and intelligent transportation, are infrastructure systems that connect our world more than we ever thought possible and are associated with a single concept, the Internet of Things (IoT). The number of devices connected to the IoT and hence the number of traffic flow increases continuously, as well as the emergence of new applications. Although cutting-edge hardware technology can be employed to achieve a fast implementation to handle this huge data streams, there will always be a limit on size of traffic supported by a given architecture. However, recent cloud-based big data technologies fortunately offer an ideal environment to handle this issue. Moreover, the ever-increasing high volume of traffic created on demand presents great challenges for flow management. As a solution, flow aggregation decreases the number of flows needed to be processed by the network. The previous works in the literature prove that most of aggregation strategies designed for smart grids aim at optimizing system operation performance. They consider a common identifier to aggregate traffic on each device, having its independent static aggregation policy. In this paper, we propose a dynamic approach to aggregate flows based on traffic characteristics and device preferences. Our algorithm runs on a big data platform to provide an end-to-end network visibility of flows, which performs high-speed and high-volume computations to identify the clusters of similar flows and aggregate massive number of mice flows into a few meta-flows. Compared with existing solutions, our approach dynamically aggregates large number of such small flows into fewer flows, based on traffic characteristics and access node preferences. Using this approach, we alleviate the problem of processing a large amount of micro flows, and also significantly improve the accuracy of meeting the access node QoS demands. We conducted experiments, using a dataset of up to 100,000 flows, and studied the performance of our algorithm analytically. The experimental results are presented to show the promising effectiveness and scalability of our proposed approach.