• Title/Summary/Keyword: Cloud applications

Search Result 483, Processing Time 0.033 seconds

Design and Implementation of IoT Collaboration Module Supporting User Context Management (사용자 상황 정보 관리를 지원하는 IoT 통합 제어 모듈 설계 및 구현)

  • Kum, Seung Woo;Lim, Tae Beom;Park, Jong Il
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.3
    • /
    • pp.129-137
    • /
    • 2015
  • Various personalized services are provided based on user context these days, and IoT(Internet of Things) devices provides effective ways to collect user context. For example, user's activity such as walking steps, calories, and sleeping hours can be collected using smart activity tracker. Smart scale can sense change of user's weight or body fat percentage. However, these services are independent to each other and not easy to make them collaborate. Many standard bodies are working on the documents for this issue, but due to diversity of IoT use case scenarios, it seems that multiple IoT technologies co-exist for the time being. This paper propose a framework to collaborate heterogeneous IoT services. The proposed framework provides methods to build application for heterogeneous IoT devices and user context management in more intuitive way using HTTP. To improve compatibility and usability, gathered user contexts are based on MPEG-UD. Implementation of framework and service with real-world devices are also presented.

A Virtual File System for IoT Service Platform Based on Linux FUSE (IoT 서비스 플랫폼을 위한 리눅스 FUSE 기반 가상 파일 시스템)

  • Lee, Hyung-Bong;Chung, Tae-Yun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.3
    • /
    • pp.139-150
    • /
    • 2015
  • The major components of IoT(Internet of Things) environment are IoT devices rather than the conventional desktop computers. One of the intrinsic characteristics of IoT devices is diversity in view of data type and data access method. In addition, IoT devices usually deal with real-time data. In order to use such IoT data for internal business or cloud services, an IoT platform capable of easy domain management and consistent data access interface is required. This paper proposes a Linux FUSE-based virtual file system connecting IoT devices on POSIX file system view. It is possible to manage IoT domain with the native Linux utilities such as mkdir, mknod, ls and find in the file system. Also, the file system makes it possible to access or control IoT devices through POSIX interface such as open(), read(), write() or close() without any separate APIs or utilities. A test result shows that the management performance of the file system is lower than that of linux file system negligibly.

Job-aware Network Scheduling for Hadoop Cluster

  • Liu, Wen;Wang, Zhigang;Shen, Yanming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.237-252
    • /
    • 2017
  • In recent years, data centers have become the core infrastructure to deal with big data processing. For these big data applications, network transmission has become one of the most important factors affecting the performance. In order to improve network utilization and reduce job completion time, in this paper, by real-time monitoring from the application layer, we propose job-aware priority scheduling. Our approach takes the correlations of flows in the same job into account, and flows in the same job are assigned the same priority. Therefore, we expect that flows in the same job finish their transmissions at about the same time, avoiding lagging flows. To achieve load balancing, two approaches (Flow-based and Spray) using ECMP (Equal-Cost multi-path routing) are presented. We implemented our scheme using NS-2 simulator. In our evaluations, we emulate real network environment by setting background traffic, scheduling delay and link failures. The experimental results show that our approach can enhance the Hadoop job execution efficiency of the shuffle stage, significantly reduce the network transmission time of the highest priority job.

Improved Georeferencing of a Wearable Indoor Mapping System Using NDT and Sensor Integration

  • Do, Linh Giang;Kim, Changjae;Kim, Han Sae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.5
    • /
    • pp.425-433
    • /
    • 2020
  • Three-dimensional data has been used for different applications such as robotics, building reconstruction, and so on. 3D data can be generated from an optical camera or a laser scanner. Especially, a wearable multi-sensor system including the above-mentioned sensors is an optimized structure that can overcome the drawbacks of each sensor. After finding the geometric relationships between sensors, georeferencing of the datasets acquired from the moving system, should be carried out. Especially, in an indoor environment, error propagation always causes problem in the georeferencing process. To improve the accuracy of this process, other sources of data were used to combine with LiDAR (Light Detection and Ranging) data, and various registration methods were also tested to find the most suitable way. More specifically, this paper proposed a new process of NDT (Normal Distribution Transform) to register the LiDAR point cloud, with additional information from other sensors. For real experiment, a wearable mapping system was used to acquire datasets in an indoor environment. The results showed that applying the new process of NDT and combining LiDAR data with IMU (Inertial Measurement Unit) information achieved the best result with the RMSE 0.063 m.

Appreciation of the Meteorological Knowledge from "Jeung-Bo-San-Lim-Gyeong-Je" (증보산림경제의 기상학적 지식에 대한 평가)

  • Ryoo, Sang-Boom;Lee, Byong-Lyol
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.3
    • /
    • pp.107-112
    • /
    • 2008
  • "Jeung-Bo-San-Lim-Gyeong-Je" (meaning "Revised Forest Management") has been well recognized as the informative document that introduces scientific knowledge and experiences of Korean ancestors regarding weather and climate. The tradition of Gwan-Cheon-Mang-Gi(i.e., empirical forecasting of short-term weather phenomena based on the status of cloud or sky) has been continuously utilized as a civilian weather forecasting method and even for very short-term weather prediction by operational forecasters these days. This agricultural technology textbook, published during the Great King Youngjo in Chosun-Dynasty, may be regarded as a poorly written document from the modern standpoint. Nonetheless, this study demonstrates that by and large the empirical knowledge contained in the book is indeed science based although their applications are limited to several hours for local forecasts in agricultural practices and daily living. For example, the wisdom of keeping water at an optimum level in a paddy field after sowing to prevent young seedlings from late frost damages was not at all different from the present technique of vinyl covered seedling nursery.

An Application of MapReduce Technique over Peer-to-Peer Network (P2P 네트워크상에서 MapReduce 기법 활용)

  • Ren, Jian-Ji;Lee, Jae-Kee
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.8
    • /
    • pp.586-590
    • /
    • 2009
  • The objective of this paper describes the design of MapReduce over Peer-to-Peer network for dynamic environments applications. MapReduce is a software framework used for Cloud Computing which processing large data sets in a highly-parallel way. Based on the Peer-to-Peer network character which node failures will happen anytime, we focus on using a DHT routing protocol which named Pastry to handle the problem of node failures. Our results are very promising and indicate that the framework could have a wide application in P2P network systems while maintaining good computational efficiency and scalability. We believe that, P2P networks and parallel computing emerge as very hot research and development topics in industry and academia for many years to come.

A Study on Tools for Agent System Development The Performance Comparison of Web Applications Written Using Python and Go in Google App Engine-based Cloud Environment (앱 엔진기반의 클라우드 환경에서 Python 및 Go로 작성된 웹어플리케이션의 성능 비교)

  • Kang, Min-Ji;Woo, Byul;Lee, Do-Young;Jo, Seoung-Hyun;Moon, Bong-Kyo
    • Annual Conference of KIPS
    • /
    • 2015.04a
    • /
    • pp.10-13
    • /
    • 2015
  • Google App Engine(GAE)은 플랫폼 서비스 형태(Platform as a Service, PaaS)의 클라우드 인프라이며 GAE를 기반으로 웹어플리케이션을 제작할 수 있도록 다양한 개발 도구를 제공해 준다. 본 논문에서는 Python 및 Go를 이용하여 GAE 상에서 구현한 클라우드 기반의 web application들의 성능을 비교하고자 한다. 각 web application의 주요 기능은 회원가입, 로그인, 채팅 등으로 구성되어 있고 특히, 회원목록이나 채팅 데이터를 처리하기 위하여 GAE에서 제공하는 Google Datastore를 사용하였다. 성능비교를 위하여 Python2.5, Python 2.7 및 Go를 사용하여 통일한 기능의 web application을 구현하였으며 각각의 메뉴에 대하여 서버 로직의 실행과 장고 (Django) 스타일의 HTML 템플릿을 렌더링하는데 걸리는 시간을 구하고 이를 비교 분석하였다.

A Comprehensive Analyses of Intrusion Detection System for IoT Environment

  • Sicato, Jose Costa Sapalo;Singh, Sushil Kumar;Rathore, Shailendra;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.16 no.4
    • /
    • pp.975-990
    • /
    • 2020
  • Nowadays, the Internet of Things (IoT) network, is increasingly becoming a ubiquitous connectivity between different advanced applications such as smart cities, smart homes, smart grids, and many others. The emerging network of smart devices and objects enables people to make smart decisions through machine to machine (M2M) communication. Most real-world security and IoT-related challenges are vulnerable to various attacks that pose numerous security and privacy challenges. Therefore, IoT offers efficient and effective solutions. intrusion detection system (IDS) is a solution to address security and privacy challenges with detecting different IoT attacks. To develop an attack detection and a stable network, this paper's main objective is to provide a comprehensive overview of existing intrusion detections system for IoT environment, cyber-security threats challenges, and transparent problems and concerns are analyzed and discussed. In this paper, we propose software-defined IDS based distributed cloud architecture, that provides a secure IoT environment. Experimental evaluation of proposed architecture shows that it has better detection and accuracy than traditional methods.

Evidential Fusion of Multsensor Multichannel Imagery

  • Lee Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.1
    • /
    • pp.75-85
    • /
    • 2006
  • This paper has dealt with a data fusion for the problem of land-cover classification using multisensor imagery. Dempster-Shafer evidence theory has been employed to combine the information extracted from the multiple data of same site. The Dempster-Shafer's approach has two important advantages for remote sensing application: one is that it enables to consider a compound class which consists of several land-cover types and the other is that the incompleteness of each sensor data due to cloud-cover can be modeled for the fusion process. The image classification based on the Dempster-Shafer theory usually assumes that each sensor is represented by a single channel. The evidential approach to image classification, which utilizes a mass function obtained under the assumption of class-independent beta distribution, has been discussed for the multiple sets of mutichannel data acquired from different sensors. The proposed method has applied to the KOMPSAT-1 EOC panchromatic imagery and LANDSAT ETM+ data, which were acquired over Yongin/Nuengpyung area of Korean peninsula. The experiment has shown that it is greatly effective on the applications in which it is hard to find homogeneous regions represented by a single land-cover type in training process.

A Context-aware Task Offloading Scheme in Collaborative Vehicular Edge Computing Systems

  • Jin, Zilong;Zhang, Chengbo;Zhao, Guanzhe;Jin, Yuanfeng;Zhang, Lejun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.383-403
    • /
    • 2021
  • With the development of mobile edge computing (MEC), some late-model application technologies, such as self-driving, augmented reality (AR) and traffic perception, emerge as the times require. Nevertheless, the high-latency and low-reliability of the traditional cloud computing solutions are difficult to meet the requirement of growing smart cars (SCs) with computing-intensive applications. Hence, this paper studies an efficient offloading decision and resource allocation scheme in collaborative vehicular edge computing networks with multiple SCs and multiple MEC servers to reduce latency. To solve this problem with effect, we propose a context-aware offloading strategy based on differential evolution algorithm (DE) by considering vehicle mobility, roadside units (RSUs) coverage, vehicle priority. On this basis, an autoregressive integrated moving average (ARIMA) model is employed to predict idle computing resources according to the base station traffic in different periods. Simulation results demonstrate that the practical performance of the context-aware vehicular task offloading (CAVTO) optimization scheme could reduce the system delay significantly.