• Title/Summary/Keyword: Cloud applications

Search Result 483, Processing Time 0.031 seconds

Optimization of Energy Consumption in the Mobile Cloud Systems

  • Su, Pan;Shengping, Wang;Weiwei, Zhou;Shengmei, Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4044-4062
    • /
    • 2016
  • We investigate the optimization of energy consumption in Mobile Cloud environment in this paper. In order to optimize the energy consumed by the CPUs in mobile devices, we put forward using the asymptotic time complexity (ATC) method to distinguish the computational complexities of the applications when they are executed in mobile devices. We propose a multi-scale scheme to quantize the channel gain and provide an improved dynamic transmission scheduling algorithm when offloading the applications to the cloud center, which has been proved to be helpful for reducing the mobile devices energy consumption. We give the energy estimation methods in both mobile execution model and cloud execution model. The numerical results suggest that energy consumed by the mobile devices can be remarkably saved with our proposed multi-scale scheme. Moreover, the results can be used as a guideline for the mobile devices to choose whether executing the application locally or offloading it to the cloud center.

Cloud Services for the forensic aspects of the investigative methods (클라우드 서비스에 대한 포렌식 측면의 수사 방법)

  • Park, Gi-Hong;No, Si-Young
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.1
    • /
    • pp.39-46
    • /
    • 2012
  • In this paper, for the cloud system by explaining how the forensic aspects of the investigation. Smartphone Growth Entering a variety of applications were developed which cloud systems of personal information and information assets sharing applications as during incidents on the case evidence collection, an important factor, whereas such systematic investigative methods, born in the course of my investigation of the can be confusing. This paper on the forensic aspects of the cloud system by proposing a crime scene investigation procedures, investigative support, and aiding in the systematic collection of data to support evidence.

Method to Evaluate and Enhance Reusability of Cloud Services (클라우드 서비스의 재사용성 평가 및 향상 기법)

  • Oh, Sang-Hun;La, Hyun-Jung;Kim, Soo-Dong
    • The KIPS Transactions:PartD
    • /
    • v.19D no.1
    • /
    • pp.49-62
    • /
    • 2012
  • In cloud computing, service providers develop and deploy services with common and reusable features among various applications, service consumers locate and reuse them in building their applications. Hence, reusability is a key intrinsic characteristic of cloud services. Services with high reusability would yield high return-on-investment. Cloud services have characteristics which do not appear in conventional programming paradigms, existing quality models for software reusability would not applicable to services. In this paper, we propose a reusability evaluation suite for cloud services, which includes quality attributes and metrics. A case study is presented to show its applicability.

Design and Implementation of CoAP based Cloud-IoT Architecture (CoAP 기반 클라우드 환경 IoT 구조 설계 및 구현)

  • Park, Young-Ki;Yang, Hyun-Sik;Kim, Young-Han
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.3
    • /
    • pp.119-127
    • /
    • 2015
  • In the IoT(Internet of Things) environment, methods that user can access sensor node directly to collect sensing data or manage sensor in a gateway have a limitations. To solve this problem, cloud based sensor network architectures are proposed. In this paper, we proposed CoAP based IoT architecture that a lightweight gateway is used for data gathering instead of using a heavy traditional one and users can request sensing data through IoT applications running in the cloud environment and analyze signaling message cost. By doing so, our system can reduce message cost compared to the traditional gateway based system.

Resource-efficient load-balancing framework for cloud data center networks

  • Kumar, Jitendra;Singh, Ashutosh Kumar;Mohan, Anand
    • ETRI Journal
    • /
    • v.43 no.1
    • /
    • pp.53-63
    • /
    • 2021
  • Cloud computing has drastically reduced the price of computing resources through the use of virtualized resources that are shared among users. However, the established large cloud data centers have a large carbon footprint owing to their excessive power consumption. Inefficiency in resource utilization and power consumption results in the low fiscal gain of service providers. Therefore, data centers should adopt an effective resource-management approach. In this paper, we present a novel load-balancing framework with the objective of minimizing the operational cost of data centers through improved resource utilization. The framework utilizes a modified genetic algorithm for realizing the optimal allocation of virtual machines (VMs) over physical machines. The experimental results demonstrate that the proposed framework improves the resource utilization by up to 45.21%, 84.49%, 119.93%, and 113.96% over a recent and three other standard heuristics-based VM placement approaches.

Efficient Checkpoint Algorithm for Message-Passing Parallel Applications on Cloud Computing (클라우드컴퓨팅에서 메시지패싱방식 응용프로그램의 효율적인 체크포인트 알고리즘)

  • Le, Duc Tai;Dao, Manh Thuong Quan;Ahn, Min-Joon;Choo, Hyun-Seung
    • Annual Conference of KIPS
    • /
    • 2011.04a
    • /
    • pp.156-157
    • /
    • 2011
  • In this work, we study the checkpoint/restart problem for message-passing parallel applications running on cloud computing environment. This is a new direction which arises from the trend of enabling the applications to run on the cloud computing environment. The main objective is to propose an efficient checkpoint algorithm for message-passing parallel applications considering communications with external systems. We further implement the novel algorithm by modifying gSOAP and OpenMPI (the open source libraries) which support service calls and checkpoint message-passing parallel programs, especially. The simulation showed that additional costs to the executing and checkpointing application of the algorithm are negligible. Ultimately, the algorithm supports efficiently the checkpoint/restart service for message-passing parallel applications, that send requests to external services.

Cloud-based Healthcare data management Framework

  • Sha M, Mohemmed;Rahamathulla, Mohamudha Parveen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1014-1025
    • /
    • 2020
  • Cloud computing services changed the way the data are managed across the healthcare system that can improve patient care. Currently, most healthcare organizations are using cloud-based applications and related services to deliver better healthcare facilities. But architecting a cloud-based healthcare system needs deep knowledge about the working nature of these services and the requirements of the healthcare environment. The success is based on the usage of appropriate cloud services in the architecture to manage the data flow across the healthcare system.Cloud service providers offer a wide variety of services to ingest, store and process healthcare data securely. The top three public cloud providers- Amazon, Google, and Microsoft offers advanced cloud services for the solution that the healthcare industry is looking for. This article proposes a framework that can effectively utilize cloud services to handle the data flow among the various stages of the healthcare infrastructure. The useful cloud services for ingesting, storing and analyzing the healthcare data for the proposed framework, from the top three cloud providers are listed in this work. Finally, a cloud-based healthcare architecture using Amazon Cloud Services is constructed for reference.

Cloudification of On-Chip Flash Memory for Reconfigurable IoTs using Connected-Instruction Execution (연결기반 명령어 실행을 이용한 재구성 가능한 IoT를 위한 온칩 플래쉬 메모리의 클라우드화)

  • Lee, Dongkyu;Cho, Jeonghun;Park, Daejin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.2
    • /
    • pp.103-111
    • /
    • 2019
  • The IoT-driven large-scaled systems consist of connected things with on-chip executable embedded software. These light-weighted embedded things have limited hardware space, especially small size of on-chip flash memory. In addition, on-chip embedded software in flash memory is not easy to update in runtime to equip with latest services in IoT-driven applications. It is becoming important to develop light-weighted IoT devices with various software in the limited on-chip flash memory. The remote instruction execution in cloud via IoT connectivity enables to provide high performance software execution with unlimited software instruction in cloud and low-power streaming of instruction execution in IoT edge devices. In this paper, we propose a Cloud-IoT asymmetric structure for providing high performance instruction execution in cloud, still low power code executable thing in light-weighted IoT edge environment using remote instruction execution. We propose a simulated approach to determine efficient partitioning of software runtime in cloud and IoT edge. We evaluated the instruction cloudification using remote instruction by determining the execution time by the proposed structure. The cloud-connected instruction set simulator is newly introduced to emulate the behavior of the processor. Experimental results of the cloud-IoT connected software execution using remote instruction showed the feasibility of cloudification of on-chip code flash memory. The simulation environment for cloud-connected code execution successfully emulates architectural operations of on-chip flash memory in cloud so that the various software services in IoT can be accelerated and performed in low-power by cloudification of remote instruction execution. The execution time of the program is reduced by 50% and the memory space is reduced by 24% when the cloud-connected code execution is used.

Cloud Security and Privacy: SAAS, PAAS, and IAAS

  • Bokhari Nabil;Jose Javier Martinez Herraiz
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.3
    • /
    • pp.23-28
    • /
    • 2024
  • The multi-tenancy and high scalability of the cloud have inspired businesses and organizations across various sectors to adopt and deploy cloud computing. Cloud computing provides cost-effective, reliable, and convenient access to pooled resources, including storage, servers, and networking. Cloud service models, SaaS, PaaS, and IaaS, enable organizations, developers, and end users to access resources, develop and deploy applications, and provide access to pooled computing infrastructure. Despite the benefits, cloud service models are vulnerable to multiple security and privacy attacks and threats. The SaaS layer is on top of the PaaS, and the IaaS is the bottom layer of the model. The software is hosted by a platform offered as a service through an infrastructure provided by a cloud computing provider. The Hypertext Transfer Protocol (HTTP) delivers cloud-based apps through a web browser. The stateless nature of HTTP facilitates session hijacking and related attacks. The Open Web Applications Security Project identifies web apps' most critical security risks as SQL injections, cross-site scripting, sensitive data leakage, lack of functional access control, and broken authentication. The systematic literature review reveals that data security, application-level security, and authentication are the primary security threats in the SaaS model. The recommended solutions to enhance security in SaaS include Elliptic-curve cryptography and Identity-based encryption. Integration and security challenges in PaaS and IaaS can be effectively addressed using well-defined APIs, implementing Service Level Agreements (SLAs), and standard syntax for cloud provisioning.

Intelligent Resource Management Schemes for Systems, Services, and Applications of Cloud Computing Based on Artificial Intelligence

  • Lim, JongBeom;Lee, DaeWon;Chung, Kwang-Sik;Yu, HeonChang
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1192-1200
    • /
    • 2019
  • Recently, artificial intelligence techniques have been widely used in the computer science field, such as the Internet of Things, big data, cloud computing, and mobile computing. In particular, resource management is of utmost importance for maintaining the quality of services, service-level agreements, and the availability of the system. In this paper, we review and analyze various ways to meet the requirements of cloud resource management based on artificial intelligence. We divide cloud resource management techniques based on artificial intelligence into three categories: fog computing systems, edge-cloud systems, and intelligent cloud computing systems. The aim of the paper is to propose an intelligent resource management scheme that manages mobile resources by monitoring devices' statuses and predicting their future stability based on one of the artificial intelligence techniques. We explore how our proposed resource management scheme can be extended to various cloud-based systems.