• Title/Summary/Keyword: Cloud applications

Search Result 483, Processing Time 0.033 seconds

IoT-Based Automatic Water Quality Monitoring System with Optimized Neural Network

  • Anusha Bamini A M;Chitra R;Saurabh Agarwal;Hyunsung Kim;Punitha Stephan;Thompson Stephan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.1
    • /
    • pp.46-63
    • /
    • 2024
  • One of the biggest dangers in the globe is water contamination. Water is a necessity for human survival. In most cities, the digging of borewells is restricted. In some cities, the borewell is allowed for only drinking water. Hence, the scarcity of drinking water is a vital issue for industries and villas. Most of the water sources in and around the cities are also polluted, and it will cause significant health issues. Real-time quality observation is necessary to guarantee a secure supply of drinking water. We offer a model of a low-cost system of monitoring real-time water quality using IoT to address this issue. The potential for supporting the real world has expanded with the introduction of IoT and other sensors. Multiple sensors make up the suggested system, which is utilized to identify the physical and chemical features of the water. Various sensors can measure the parameters such as temperature, pH, and turbidity. The core controller can process the values measured by sensors. An Arduino model is implemented in the core controller. The sensor data is forwarded to the cloud database using a WI-FI setup. The observed data will be transferred and stored in a cloud-based database for further processing. It wasn't easy to analyze the water quality every time. Hence, an Optimized Neural Network-based automation system identifies water quality from remote locations. The performance of the feed-forward neural network classifier is further enhanced with a hybrid GA- PSO algorithm. The optimized neural network outperforms water quality prediction applications and yields 91% accuracy. The accuracy of the developed model is increased by 20% because of optimizing network parameters compared to the traditional feed-forward neural network. Significant improvement in precision and recall is also evidenced in the proposed work.

Collaborative Inference for Deep Neural Networks in Edge Environments

  • Meizhao Liu;Yingcheng Gu;Sen Dong;Liu Wei;Kai Liu;Yuting Yan;Yu Song;Huanyu Cheng;Lei Tang;Sheng Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.7
    • /
    • pp.1749-1773
    • /
    • 2024
  • Recent advances in deep neural networks (DNNs) have greatly improved the accuracy and universality of various intelligent applications, at the expense of increasing model size and computational demand. Since the resources of end devices are often too limited to deploy a complete DNN model, offloading DNN inference tasks to cloud servers is a common approach to meet this gap. However, due to the limited bandwidth of WAN and the long distance between end devices and cloud servers, this approach may lead to significant data transmission latency. Therefore, device-edge collaborative inference has emerged as a promising paradigm to accelerate the execution of DNN inference tasks where DNN models are partitioned to be sequentially executed in both end devices and edge servers. Nevertheless, collaborative inference in heterogeneous edge environments with multiple edge servers, end devices and DNN tasks has been overlooked in previous research. To fill this gap, we investigate the optimization problem of collaborative inference in a heterogeneous system and propose a scheme CIS, i.e., collaborative inference scheme, which jointly combines DNN partition, task offloading and scheduling to reduce the average weighted inference latency. CIS decomposes the problem into three parts to achieve the optimal average weighted inference latency. In addition, we build a prototype that implements CIS and conducts extensive experiments to demonstrate the scheme's effectiveness and efficiency. Experiments show that CIS reduces 29% to 71% on the average weighted inference latency compared to the other four existing schemes.

A Longitudinal Study on Customers' Usable Features and Needs of Activity Trackers as IoT based Devices (사물인터넷 기반 활동량측정기의 고객사용특성 및 욕구에 대한 종단연구)

  • Hong, Suk-Ki;Yoon, Sang-Chul
    • Journal of Internet Computing and Services
    • /
    • v.20 no.1
    • /
    • pp.17-24
    • /
    • 2019
  • Since the information of $4^{th}$ Industrial Revolution is introduced in WEF (World Economic Forum) in 2016, IoT, AI, Big Data, 5G, Cloud Computing, 3D/4DPrinting, Robotics, Nano Technology, and Bio Engineering have been rapidly developed as business applications as well as technologies themselves. Among the diverse business applications for IoT, wearable devices are recognized as the leading application devices for final customers. This longitudinal study is compared to the results of the 1st study conducted to identify customer needs of activity trackers, and links the identified users' needs with the well-known marketing frame of marketing mix. For this longitudinal study, a survey was applied to university students in June, 2018, and ANOVA were applied for major variables on usable features. Further, potential customer needs were identified and visualized by Word Cloud Technique. According to the analysis results, different from other high tech IT devices, activity trackers have diverse and unique potential needs. The results of this longitudinal study contribute primarily to understand usable features and their changes according to product maturity. It would provide some valuable implications in dynamic manner to activity tracker designers as well as researchers in this arena.

Soil Moisture Estimation Using KOMPSAT-3 and KOMPSAT-5 SAR Images and Its Validation: A Case Study of Western Area in Jeju Island (KOMPSAT-3와 KOMPSAT-5 SAR 영상을 이용한 토양수분 산정과 결과 검증: 제주 서부지역 사례 연구)

  • Jihyun Lee;Hayoung Lee;Kwangseob Kim;Kiwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1185-1193
    • /
    • 2023
  • The increasing interest in soil moisture data from satellite imagery for applications in hydrology, meteorology, and agriculture has led to the development of methods to produce variable-resolution soil moisture maps. Research on accurate soil moisture estimation using satellite imagery is essential for remote sensing applications. The purpose of this study is to generate a soil moisture estimation map for a test area using KOMPSAT-3/3A and KOMPSAT-5 SAR imagery and to quantitatively compare the results with soil moisture data from the Soil Moisture Active Passive (SMAP) mission provided by NASA, with a focus on accuracy validation. In addition, the Korean Environmental Geographic Information Service (EGIS) land cover map was used to determine soil moisture, especially in agricultural and forested regions. The selected test area for this study is the western part of Jeju, South Korea, where input data were available for the soil moisture estimation algorithm based on the Water Cloud Model (WCM). Synthetic Aperture Radar (SAR) imagery from KOMPSAT-5 HV and Sentinel-1 VV were used for soil moisture estimation, while vegetation indices were calculated from the surface reflectance of KOMPSAT-3 imagery. Comparison of the derived soil moisture results with SMAP (L-3) and SMAP (L-4) data by differencing showed a mean difference of 4.13±3.60 p% and 14.24±2.10 p%, respectively, indicating a level of agreement. This research suggests the potential for producing highly accurate and precise soil moisture maps using future South Korean satellite imagery and publicly available data sources, as demonstrated in this study.

Multiple Camera Calibration for Panoramic 3D Virtual Environment (파노라믹 3D가상 환경 생성을 위한 다수의 카메라 캘리브레이션)

  • 김세환;김기영;우운택
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.2
    • /
    • pp.137-148
    • /
    • 2004
  • In this paper, we propose a new camera calibration method for rotating multi-view cameras to generate image-based panoramic 3D Virtual Environment. Since calibration accuracy worsens with an increase in distance between camera and calibration pattern, conventional camera calibration algorithms are not proper for panoramic 3D VE generation. To remedy the problem, a geometric relationship among all lenses of a multi-view camera is used for intra-camera calibration. Another geometric relationship among multiple cameras is used for inter-camera calibration. First camera parameters for all lenses of each multi-view camera we obtained by applying Tsai's algorithm. In intra-camera calibration, the extrinsic parameters are compensated by iteratively reducing discrepancy between estimated and actual distances. Estimated distances are calculated using extrinsic parameters for every lens. Inter-camera calibration arranges multiple cameras in a geometric relationship. It exploits Iterative Closet Point (ICP) algorithm using back-projected 3D point clouds. Finally, by repeatedly applying intra/inter-camera calibration to all lenses of rotating multi-view cameras, we can obtain improved extrinsic parameters at every rotated position for a middle-range distance. Consequently, the proposed method can be applied to stitching of 3D point cloud for panoramic 3D VE generation. Moreover, it may be adopted in various 3D AR applications.

Design and Implementation of an Alternate System Interconnect based on PCI Express (PCI Express 기반 시스템 인터커넥트의 설계 및 구현)

  • Kim, Young Woo;Ren, Ye;Choi, WonHyuk
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.8
    • /
    • pp.74-85
    • /
    • 2015
  • PCI Express is a well-known and widely used de-facto system bus standard for connecting among a processor and IO devices. PCI Express is originated from old PCI standard, and its most of applications are limited to be used within a PC or server system. But, because of its fast speed, low power consumption, and good protocol efficiency, it is considered as one of a good candidate for an alternate system interconnect for many years. In this paper, we present design, implementation and early evaluation of an alternate system interconnect by utilizing PCI Express. The developed alternate system interconnect using PCI Express (named PCIeLINK) utilizes non-transparent bridging (NTB) technic which generally used in fail-over system in PCI and PCI Express. By using NTB technic, PCI Express device can be extended to outside of a system without electrical and logical problems arising during system boot and enumeration. To build up an alternate system interconnect, we designed and implemented a network interface card having multiple PCI Express ${\times}4$ connections (theoretically 20 Gbps) and tested, The early test results revealed that an ${\times}4$ port in the card showed 8.6 Gbps peak performance for bulk transmission and 5.1 Gbps peak for normal TCP/IP transfer.

Segmentation of Seabed Points from Airborne Bathymetric LiDAR Point Clouds Using Cloth Simulation Filtering Algorithm (항공수심라이다 데이터 해저면 포인트 클라우드 분리를 위한 CSF 알고리즘 적용에 관한 연구)

  • Lee, Jae Bin;Jung, Jae Hoon;Kim, Hye Jin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • ABL (Airborne Bathymetric LiDAR) is an advanced survey technology that uses green lasers to simultaneously measure the water depths and oceanic topography in coastal and river areas. Seabed point cloud extraction is an essential prerequisite to further utilizing the ABL data for various geographic data processing and applications. Conventional seabed detection approaches often use return waveforms. However, their limited accessibility often limits the broad use of the bathymetric LiDAR (Light Detection And Ranging) data. Further, it is often questioned if the waveform-based seabed extraction is reliable enough to extract seabed. Therefore, there is a high demand to extract seabed from the point cloud using other sources of information, such as geometric information. This study aimed to assess the feasibility of a ground filtering method to seabed extraction from geo-referenced point cloud data by using CSF (Cloth Simulation Filtering) method. We conducted a preliminary experiment with the RIGEL VQ 880 bathymetric data, and the results show that the CSF algorithm can be effectively applied to the seabed point segmentation.

A Secure and Privacy-Aware Route Tracing and Revocation Mechanism in VANET-based Clouds (VANET 기반 클라우드 환경에서 안전과 프라이버시를 고려한 경로추적 및 철회 기법)

  • Hussain, Rasheed;Oh, Heekuck
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.5
    • /
    • pp.795-807
    • /
    • 2014
  • Vehicular Ad hoc Network (VANET) has gone through a rich amount of research and currently is making its way towards the deployment. However, surprisingly it evolved to rather more applications and services-rich breed referred to as VANET-based clouds due to the advancements in the automobile and communication technologies. Security and privacy have always been the challenges for the think tanks to deploy this technology on mass scale. It is even worse that some security issues are orthogonally related to each other such as privacy, revocation and route tracing. In this paper, we aim at a specific VANET-based clouds framework proposed by Hussain et al. namely VANET using Clouds (VuC) where VANET and cloud infrastructure cooperate with each other in order to provide VANET users (more precisely subscribers) with services. We specifically target the aforementioned conflicted privacy, route tracing, and revocation problem in VANET-based clouds environment. We propose a multiple pseudonymous approach for privacy reasons and leverage the beacons stored in the cloud infrastructure for both route tracing and revocation. In the proposed scheme, revocation authorities after colluding, can trace the path taken by the target node for a specified timespan and can also revoke the identity if needed. Our proposed scheme is secure, conditional privacy preserved, and is computationally less expensive than the previously proposed schemes.

A Study on the Improvement of Collection, Management and Sharing of Maritime Traffic Information (해상교통정보의 수집, 관리 및 공유 개선방안에 관한 연구)

  • Shin, Gil-Ho;Song, Chae-Uk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.515-524
    • /
    • 2022
  • To effectively collect, manage, and share the maritime traffic information, it is necessary to identify the technology trends concerning this particular information and analyze its current status and problems. Therefore, this study observes the domestic and foreign technology trends involving maritime traffic information while analyzing and summarizing the current status and problems in collecting, managing, and sharing it. According to the data analysis, the problems in the collecting stage are difficulties in collecting visual information from long-distance radars, CCTVs, and cameras in areas outside the LTE network coverage. Notably, this explains the challenges in detecting smuggling ships entering the territorial waters through the exclusive economic zone (EEZ) in the early stage. The problems in the management stage include difficult reductions and expansions of maritime traffic information caused by the lack of flexibility in storage spaces mostly constructed by the maritime transportation system. Additionally, it is challenging to deal with system failure with system redundancy and backup as a countermeasure. Furthermore, the problems in the sharing stage show that it is difficult to share information with external operating organizations since the internal network is mainly used to share maritime transportation information. If at all through the government cloud via platforms such as LRIT and SASS, it often fails to effectively provide various S/W applications that help use maritime big data. Therefore, it is suggested that collecting equipment such as unmanned aerial vehicles and satellites should be constructed to expand collecting areas in the collecting stage. In the management and sharing stages, the introduction and construction of private clouds are suggested, considering the operational administration and information disclosure of each maritime transportation system. Through these efforts, an enhancement of the expertise and security of clouds is expected.

Low-Power Streamable AI Software Runtime Execution based on Collaborative Edge-Cloud Image Processing in Metaverse Applications (에지 클라우드 협동 이미지 처리기반 메타버스에서 스트리밍 가능한 저전력 AI 소프트웨어의 런타임 실행)

  • Kang, Myeongjin;Kim, Ho;Park, Jungwon;Yang, Seongbeom;Yun, Junseo;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.11
    • /
    • pp.1577-1585
    • /
    • 2022
  • As the interest in the 4th industrial revolution and metaverse increases, metaverse with multi edge structure is proposed and noted. Metaverse is a structure that can create digital doctor-like system through a large amount of image processing and data transmission in a multi edge system. Since metaverse application requires calculating performance, which can reconstruct 3-D space, edge hardware's insufficient calculating performance has been a problem. To provide streamable AI software in runtime, image processing, and data transmission, which is edge's loads, needs to be lightweight. Also lightweight at the edge leads to power consumption reduction of the entire metaverse application system. In this paper, we propose collaborative edge-cloud image processing with remote image processing method and Region of Interest (ROI) to overcome edge's power performance and build streamable and runtime executable AI software. The proposed structure was implemented using a PC and an embedded board, and the reduction of time, power, and network communications were verified.