• Title/Summary/Keyword: Cloud applications

Search Result 483, Processing Time 0.037 seconds

Development of Unmanned Driving Technologies for Speed Sprayer in Orchard Environment (과수원 환경에서의 방제기 무인주행 기술 개발)

  • Li, Song;Kang, Dongyeop;Lee, Hae-min;An, Su-yong;Kwon, Wookyong;Chung, Yunsu
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.6
    • /
    • pp.269-279
    • /
    • 2020
  • This paper presents the design and implementation of embedded systems and autonomous path generation for autonomous speed sprayer. Autonomous Orchard Systems can be divided into embedded controller and path generation module. Embedded controller receives analog sensor data, on/off switch data and control linear actuator, break, clutch and steering module. In path generation part, we get 3D cloud point using Velodyne VLP16 LIDAR sensor and process the point cloud to generate maps, do localization, generate driving path. Then, it finally generates velocity and rotation angle in real time, and sends the data to embedded controller. Embedded controller controls steering wheel based on the received data. The developed autonomous speed sprayer is verified in test-bed with apple tree-shaped artworks.

Trend of Edge Machine Learning as-a-Service (서비스형 엣지 머신러닝 기술 동향)

  • Na, J.C.;Jeon, S.H.
    • Electronics and Telecommunications Trends
    • /
    • v.37 no.5
    • /
    • pp.44-53
    • /
    • 2022
  • The Internet of Things (IoT) is growing exponentially, with the number of IoT devices multiplying annually. Accordingly, the paradigm is changing from cloud computing to edge computing and even tiny edge computing because of the low latency and cost reduction. Machine learning is also shifting its role from the cloud to edge or tiny edge according to the paradigm shift. However, the fragmented and resource-constrained features of IoT devices have limited the development of artificial intelligence applications. Edge MLaaS (Machine Learning as-a-Service) has been studied to easily and quickly adopt machine learning to products and overcome the device limitations. This paper briefly summarizes what Edge MLaaS is and what element of research it requires.

The Security and Privacy Issues of Fog Computing

  • Sultan Algarni;Khalid Almarhabi;Ahmed M. Alghamdi;Asem Alradadi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.25-31
    • /
    • 2023
  • Fog computing diversifies cloud computing by using edge devices to provide computing, data storage, communication, management, and control services. As it has a decentralised infrastructure that is capable of amalgamating with cloud computing as well as providing real-time data analysis, it is an emerging method of using multidisciplinary domains for a variety of applications; such as the IoT, Big Data, and smart cities. This present study provides an overview of the security and privacy concerns of fog computing. It also examines its fundamentals and architecture as well as the current trends, challenges, and potential methods of overcoming issues in fog computing.

Video Encoding Application of SmartTV using Clould Computing (클라우드 컴퓨팅을 이용한 동영상 인코딩 스마트TV 어플리케이션)

  • Kim, Sung-Hyune;Yun, In-Sik;Park, Kyung-Soo;Moon, Il-young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.996-999
    • /
    • 2014
  • Early Smart TV market had their interest in the ability of HW, but these days Smart TV market begin to concentrate on it's services, contents and applications of SW. However, because in Smart TV application, there is no major difference with the application in smart phones and tablets. So the utilization rate in Smart TV application is evidently low. That's the reason why many people did not feel the need to use smart TV applications. In order to solve this problem, this paper propose to develope an application with the cloud computing technique [clould computing] that is intended to provide an usability through the interlocking of the individual PC and smart phone. After uploading user's photos from smart phone or PC to smart TV, this application will help not only to create user's own video but also to add various kind of video effects that user want. Therefore, in this paper, I expect the activation of smart TV applications.

  • PDF

A design of GPU container co-execution framework measuring interference among applications (GPU 컨테이너 동시 실행에 따른 응용의 간섭 측정 프레임워크 설계)

  • Kim, Sejin;Kim, Yoonhee
    • KNOM Review
    • /
    • v.23 no.1
    • /
    • pp.43-50
    • /
    • 2020
  • As General Purpose Graphics Processing Unit (GPGPU) recently plays an essential role in high-performance computing, several cloud service providers offer GPU service. Most cluster orchestration platforms in a cloud environment using containers allocate the integer number of GPU to jobs and do not allow a node shared with other jobs. In this case, resource utilization of a GPU node might be low if a job does not intensively require either many cores or large size of memory in GPU. GPU virtualization brings opportunities to realize kernel concurrency and share resources. However, performance may vary depending on characteristics of applications running concurrently and interference among them due to resource contention on a node. This paper proposes GPU container co-execution framework with multiple server creation and execution based on Kubernetes, container orchestration platform for measuring interference which may be occurred by sharing GPU resources. Performance changes according to scheduling policies were investigated by executing several jobs on GPU. The result shows that optimal scheduling is not possible only considering GPU memory and computing resource usage. Interference caused by co-execution among applications is measured using the framework.

Impact Assessment of Climate Change by Using Cloud Computing (클라우드 컴퓨팅을 이용한 기후변화 영향평가)

  • Kim, Kwang-S.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.2
    • /
    • pp.101-108
    • /
    • 2011
  • Climate change could have a pronounced impact on natural and agricultural ecosystems. To assess the impact of climate change, projected climate data have been used as inputs to models. Because such studies are conducted occasionally, it would be useful to employ Cloud computing, which provides multiple instances of operating systems in a virtual environment to do processing on demand without building or maintaining physical computing resources. Furthermore, it would be advantageous to use open source geospatial applications in order to avoid the limitations of proprietary software when Cloud computing is used. As a pilot study, Amazon Web Service ? Elastic Compute Cloud (EC2) was used to calculate the number of days with rain in a given month. Daily sets of climate projection data, which were about 70 gigabytes in total, were processed using virtual machines with a customized database transaction application. The application was linked against open source libraries for the climate data and database access. In this approach, it took about 32 hours to process 17 billion rows of record in order to calculate the rain day on a global scale over the next 100 years using ten clients and one server instances. Here I demonstrate that Cloud computing could provide the high level of performance for impact assessment studies of climate change that require considerable amount of data.

Knowledge Transfer Using User-Generated Data within Real-Time Cloud Services

  • Zhang, Jing;Pan, Jianhan;Cai, Zhicheng;Li, Min;Cui, Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.77-92
    • /
    • 2020
  • When automatic speech recognition (ASR) is provided as a cloud service, it is easy to collect voice and application domain data from users. Harnessing these data will facilitate the provision of more personalized services. In this paper, we demonstrate our transfer learning-based knowledge service that built with the user-generated data collected through our novel system that deliveries personalized ASR service. First, we discuss the motivation, challenges, and prospects of building up such a knowledge-based service-oriented system. Second, we present a Quadruple Transfer Learning (QTL) method that can learn a classification model from a source domain and transfer it to a target domain. Third, we provide an overview architecture of our novel system that collects voice data from mobile users, labels the data via crowdsourcing, utilises these collected user-generated data to train different machine learning models, and delivers the personalised real-time cloud services. Finally, we use the E-Book data collected from our system to train classification models and apply them in the smart TV domain, and the experimental results show that our QTL method is effective in two classification tasks, which confirms that the knowledge transfer provides a value-added service for the upper-layer mobile applications in different domains.

Integrating Resilient Tier N+1 Networks with Distributed Non-Recursive Cloud Model for Cyber-Physical Applications

  • Okafor, Kennedy Chinedu;Longe, Omowunmi Mary
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.7
    • /
    • pp.2257-2285
    • /
    • 2022
  • Cyber-physical systems (CPS) have been growing exponentially due to improved cloud-datacenter infrastructure-as-a-service (CDIaaS). Incremental expandability (scalability), Quality of Service (QoS) performance, and reliability are currently the automation focus on healthy Tier 4 CDIaaS. However, stable QoS is yet to be fully addressed in Cyber-physical data centers (CP-DCS). Also, balanced agility and flexibility for the application workloads need urgent attention. There is a need for a resilient and fault-tolerance scheme in terms of CPS routing service including Pod cluster reliability analytics that meets QoS requirements. Motivated by these concerns, our contributions are fourfold. First, a Distributed Non-Recursive Cloud Model (DNRCM) is proposed to support cyber-physical workloads for remote lab activities. Second, an efficient QoS stability model with Routh-Hurwitz criteria is established. Third, an evaluation of the CDIaaS DCN topology is validated for handling large-scale, traffic workloads. Network Function Virtualization (NFV) with Floodlight SDN controllers was adopted for the implementation of DNRCM with embedded rule-base in Open vSwitch engines. Fourth, QoS evaluation is carried out experimentally. Considering the non-recursive queuing delays with SDN isolation (logical), a lower queuing delay (19.65%) is observed. Without logical isolation, the average queuing delay is 80.34%. Without logical resource isolation, the fault tolerance yields 33.55%, while with logical isolation, it yields 66.44%. In terms of throughput, DNRCM, recursive BCube, and DCell offered 38.30%, 36.37%, and 25.53% respectively. Similarly, the DNRCM had an improved incremental scalability profile of 40.00%, while BCube and Recursive DCell had 33.33%, and 26.67% respectively. In terms of service availability, the DNRCM offered 52.10% compared with recursive BCube and DCell which yielded 34.72% and 13.18% respectively. The average delays obtained for DNRCM, recursive BCube, and DCell are 32.81%, 33.44%, and 33.75% respectively. Finally, workload utilization for DNRCM, recursive BCube, and DCell yielded 50.28%, 27.93%, and 21.79% respectively.

A Survey on Open Source based Large Language Models (오픈 소스 기반의 거대 언어 모델 연구 동향: 서베이)

  • Ha-Young Joo;Hyeontaek Oh;Jinhong Yang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.4
    • /
    • pp.193-202
    • /
    • 2023
  • In recent years, the outstanding performance of large language models (LLMs) trained on extensive datasets has become a hot topic. Since studies on LLMs are available on open-source approaches, the ecosystem is expanding rapidly. Models that are task-specific, lightweight, and high-performing are being actively disseminated using additional training techniques using pre-trained LLMs as foundation models. On the other hand, the performance of LLMs for Korean is subpar because English comprises a significant proportion of the training dataset of existing LLMs. Therefore, research is being carried out on Korean-specific LLMs that allow for further learning with Korean language data. This paper identifies trends of open source based LLMs and introduces research on Korean specific large language models; moreover, the applications and limitations of large language models are described.

Design of A new Algorithm by Using Standard Deviation Techniques in Multi Edge Computing with IoT Application

  • HASNAIN A. ALMASHHADANI;XIAOHENG DENG;OSAMAH R. AL-HWAIDI;SARMAD T. ABDUL-SAMAD;MOHAMMED M. IBRAHM;SUHAIB N. ABDUL LATIF
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.4
    • /
    • pp.1147-1161
    • /
    • 2023
  • The Internet of Things (IoT) requires a new processing model that will allow scalability in cloud computing while reducing time delay caused by data transmission within a network. Such a model can be achieved by using resources that are closer to the user, i.e., by relying on edge computing (EC). The amount of IoT data also grows with an increase in the number of IoT devices. However, building such a flexible model within a heterogeneous environment is difficult in terms of resources. Moreover, the increasing demand for IoT services necessitates shortening time delay and response time by achieving effective load balancing. IoT devices are expected to generate huge amounts of data within a short amount of time. They will be dynamically deployed, and IoT services will be provided to EC devices or cloud servers to minimize resource costs while meeting the latency and quality of service (QoS) constraints of IoT applications when IoT devices are at the endpoint. EC is an emerging solution to the data processing problem in IoT. In this study, we improve the load balancing process and distribute resources fairly to tasks, which, in turn, will improve QoS in cloud and reduce processing time, and consequently, response time.