• Title/Summary/Keyword: Cloud applications

Search Result 483, Processing Time 0.033 seconds

Deep Learning-Based Dynamic Scheduling with Multi-Agents Supporting Scalability in Edge Computing Environments (멀티 에이전트 에지 컴퓨팅 환경에서 확장성을 지원하는 딥러닝 기반 동적 스케줄링)

  • JongBeom Lim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.9
    • /
    • pp.399-406
    • /
    • 2023
  • Cloud computing has been evolved to support edge computing architecture that combines fog management layer with edge servers. The main reason why it is received much attention is low communication latency for real-time IoT applications. At the same time, various cloud task scheduling techniques based on artificial intelligence have been proposed. Artificial intelligence-based cloud task scheduling techniques show better performance in comparison to existing methods, but it has relatively high scheduling time. In this paper, we propose a deep learning-based dynamic scheduling with multi-agents supporting scalability in edge computing environments. The proposed method shows low scheduling time than previous artificial intelligence-based scheduling techniques. To show the effectiveness of the proposed method, we compare the performance between previous and proposed methods in a scalable experimental environment. The results show that our method supports real-time IoT applications with low scheduling time, and shows better performance in terms of the number of completed cloud tasks in a scalable experimental environment.

Resource Management Strategies in Fog Computing Environment -A Comprehensive Review

  • Alsadie, Deafallah
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.310-328
    • /
    • 2022
  • Internet of things (IoT) has emerged as the most popular technique that facilitates enhancing humans' quality of life. However, most time sensitive IoT applications require quick response time. So, processing these IoT applications in cloud servers may not be effective. Therefore, fog computing has emerged as a promising solution that addresses the problem of managing large data bandwidth requirements of devices and quick response time. This technology has resulted in processing a large amount of data near the data source compared to the cloud. However, efficient management of computing resources involving balancing workload, allocating resources, provisioning resources, and scheduling tasks is one primary consideration for effective computing-based solutions, specifically for time-sensitive applications. This paper provides a comprehensive review of the source management strategies considering resource limitations, heterogeneity, unpredicted traffic in the fog computing environment. It presents recent developments in the resource management field of the fog computing environment. It also presents significant management issues such as resource allocation, resource provisioning, resource scheduling, task offloading, etc. Related studies are compared indifferent mentions to provide promising directions of future research by fellow researchers in the field.

A Study on the Security Framework for IoT Services based on Cloud and Fog Computing (클라우드와 포그 컴퓨팅 기반 IoT 서비스를 위한 보안 프레임워크 연구)

  • Shin, Minjeong;Kim, Sungun
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.12
    • /
    • pp.1928-1939
    • /
    • 2017
  • Fog computing is another paradigm of the cloud computing, which extends the ubiquitous services to applications on many connected devices in the IoT (Internet of Things). In general, if we access a lot of IoT devices with existing cloud, we waste a huge amount of bandwidth and work efficiency becomes low. So we apply the paradigm called fog between IoT devices and cloud. The network architecture based on cloud and fog computing discloses the security and privacy issues according to mixed paradigm. There are so many security issues in many aspects. Moreover many IoT devices are connected at fog and they generate much data, therefore light and efficient security mechanism is needed. For example, with inappropriate encryption or authentication algorithm, it causes a huge bandwidth loss. In this paper, we consider issues related with data encryption and authentication mechanism in the network architecture for cloud and fog-based M2M (Machine to Machine) IoT services. This includes trusted encryption and authentication algorithm, and key generation method. The contribution of this paper is to provide efficient security mechanisms for the proposed service architecture. We implemented the envisaged conceptual security check mechanisms and verified their performance.

Adaptive Scheduling Technique Based on Reliability in Cloud Compuing Environment (클라우드 컴퓨팅 환경에서 신뢰성 기반 적응적 스케줄링 기법)

  • Cho, In-Seock;Yu, Heon-Chang
    • The Journal of Korean Association of Computer Education
    • /
    • v.14 no.2
    • /
    • pp.75-82
    • /
    • 2011
  • Cloud computing is a computing paradigm that provides user's services anywhere, anytime in a virtualized form composed of large computing resources based on internet or intranet. In Cloud computing environments, reliability of system is impact factor because many applications handle large data. In this paper, we propose an adaptive scheduling technique based on reliability with fault tolerance that manages resource variable and resolves problems(change of user's requirement, failure occurrence) in Cloud computing environment. Futhermore, we verified the performance of the proposed scheduling through experiments in CloudSim Simulation.

  • PDF

Multi-objective Optimization Model with AHP Decision-making for Cloud Service Composition

  • Liu, Li;Zhang, Miao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3293-3311
    • /
    • 2015
  • Cloud services are required to be composed as a single service to fulfill the workflow applications. Service composition in Cloud raises new challenges caused by the diversity of users with different QoS requirements and vague preferences, as well as the development of cloud computing having geographically distributed characteristics. So the selection of the best service composition is a complex problem and it faces trade-off among various QoS criteria. In this paper, we propose a Cloud service composition approach based on evolutionary algorithms, i.e., NSGA-II and MOPSO. We utilize the combination of multi-objective evolutionary approaches and Decision-Making method (AHP) to solve Cloud service composition optimization problem. The weights generated from AHP are applied to the Crowding Distance calculations of the above two evolutionary algorithms. Our algorithm beats single-objective algorithms on the optimization ability. And compared with general multi-objective algorithms, it is able to precisely capture the users' preferences. The results of the simulation also show that our approach can achieve a better scalability.

Privacy-preserving Outsourcing Schemes of Modular Exponentiations Using Single Untrusted Cloud Server

  • Zhao, Ling;Zhang, Mingwu;Shen, Hua;Zhang, Yudi;Shen, Jian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.826-845
    • /
    • 2017
  • Outsourcing computation is one of the most important applications in cloud computing, and it has a huge ability to satisfy the demand of data centers. Modular exponentiation computation, broadly used in the cryptographic protocols, has been recognized as one of the most time-consuming calculation operations in cryptosystems. Previously, modular exponentiations can be securely outsourced by using two untrusted cloud servers. In this paper, we present two practical and secure outsourcing modular exponentiations schemes that support only one untrusted cloud server. Explicitly, we make the base and the index blind by putting them into a matrix before send to the cloud server. Our schemes provide better performance in higher efficiency and flexible checkability which support single cloud server. Additionally, there exists another advantage of our schemes that the schemes are proved to be secure and effective without any cryptographic assumptions.

Study of Danger-Theory-Based Intrusion Detection Technology in Virtual Machines of Cloud Computing Environment

  • Zhang, Ruirui;Xiao, Xin
    • Journal of Information Processing Systems
    • /
    • v.14 no.1
    • /
    • pp.239-251
    • /
    • 2018
  • In existing cloud services, information security and privacy concerns have been worried, and have become one of the major factors that hinder the popularization and promotion of cloud computing. As the cloud computing infrastructure, the security of virtual machine systems is very important. This paper presents an immune-inspired intrusion detection model in virtual machines of cloud computing environment, denoted I-VMIDS, to ensure the safety of user-level applications in client virtual machines. The model extracts system call sequences of programs, abstracts them into antigens, fuses environmental information of client virtual machines into danger signals, and implements intrusion detection by immune mechanisms. The model is capable of detecting attacks on processes which are statically tampered, and is able to detect attacks on processes which are dynamically running. Therefore, the model supports high real time. During the detection process, the model introduces information monitoring mechanism to supervise intrusion detection program, which ensures the authenticity of the test data. Experimental results show that the model does not bring much spending to the virtual machine system, and achieves good detection performance. It is feasible to apply I-VMIDS to the cloud computing platform.

Direct Finite Element Model Generation using 3 Dimensional Scan Data (3D SCAN DATA 를 이용한 직접유한요소모델 생성)

  • Lee Su-Young;Kim Sung-Jin;Jeong Jae-Young;Park Jong-Sik;Lee Seong-Beom
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.143-148
    • /
    • 2006
  • It is still very difficult to generate a geometry model and finite element model, which has complex and many free surface, even though 3D CAD solutions are applied. Furthermore, in the medical field, which is a big growth area of recent years, there is no drawing. For these reasons, making a geometry model, which is used in finite element analysis, is very difficult. To resolve these problems and satisfy the requests of the need to create a 3D digital file for an object where none had existed before, new technologies are appeared recently. Among the recent technologies, there is a growing interest in the availability of fast, affordable optical range laser scanning. The development of 3D laser scan technology to obtain 3D point cloud data, made it possible to generate 3D model of complex object. To generate CAD and finite element model using point cloud data from 3D scanning, surface reconstruction applications have widely used. In the early stage, these applications have many difficulties, such as data handling, model creation time and so on. Recently developed point-based surface generation applications partly resolve these difficulties. However there are still many problems. In case of large and complex object scanning, generation of CAD and finite element model has a significant amount of working time and effort. Hence, we concerned developing a good direct finite element model generation method using point cloud's location coordinate value to save working time and obtain accurate finite element model.

Performance Management Technique of Remote VR Service for Multiple Users in Container-Based Cloud Environments Sharing GPU (GPU를 공유하는 컨테이너 기반 클라우드 환경에서 다수의 사용자를 위한 원격 VR 서비스의 성능 관리 기법)

  • Kang, Jihun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.1
    • /
    • pp.9-22
    • /
    • 2022
  • Virtual Reality(VR) technology is an interface technology that is actively used in various audio-visual-based applications by showing users a virtual world composed of computer graphics. Since VR-based applications are graphic processing-based applications, expensive computing devices equipped with Graphics Processing Unit(GPU) are essential for graphic processing. This incurs a cost burden on VR application users for maintaining and managing computing devices, and as one of the solutions to this, a method of operating services in cloud environments is being used. This paper proposes a performance management technique to address the problem of performance interference between containers owing to GPU resource competition in container-based high-performance cloud environments in which multiple containers share a single GPU. The proposed technique reduces performance deviation due to performance interference, helping provide uniform performance-based remote VR services for users. In addition, this paper verifies the efficiency of the proposed technique through experiments.

K-Defense Cloud Computing System Design through Cloud Modeling and Analysis of Social Network Service Application (소셜 네트워크 서비스 어플리케이션의 클라우드 모델링 및 분석을 통한 국방 클라우드 컴퓨탱 시스템 설계)

  • Lee, Sung-Tae;Ryou, Hwang-Bin
    • Convergence Security Journal
    • /
    • v.13 no.1
    • /
    • pp.37-43
    • /
    • 2013
  • In 2010, the Ministry of National Defense decided to build a MegaCenter including the cloud computing technology by 2014, as part of the '2012 Information Service Plan', which is now underway. The Cloud computing system environment should be designed applying cloud computing technology and policy for an efficient infrastructure that many IT resources are available in the data center as a concentrated form. That is, the system should be designed in such a way that clouding services will be efficiently provided to meet the needs of users and there will not be unnecessary waste of resources. However, in order to build an optimal system, it should be possible to predict the service performance and the resource availability at the initial phase of system design. In this paper, using the CloudAnalyst simulator to predict availability of the K-defence cloud computing system service, conducts cloud modeling and analysis of the 'Facebook', one of the most famous social network service applications with most users in the world. An Optimal K-Defense cloud computing design model is proposed through simulation results.