• Title/Summary/Keyword: Cloud ITS

Search Result 635, Processing Time 0.025 seconds

Distributed Multimedia Scheduling in the Cloud

  • Zheng, Mengting;Wang, Wei
    • Journal of Multimedia Information System
    • /
    • v.2 no.1
    • /
    • pp.143-152
    • /
    • 2015
  • Multimedia services in the cloud have become a popular trend in the big data environment. However, how to efficiently schedule a large number of multimedia services in the cloud is still an open and challengeable problem. Current cloud-based scheduling algorithms exist the following problems: 1) the content of the multimedia is ignored, and 2) the cloud platform is a known parameter, which makes current solutions are difficult to utilize practically. To resolve the above issues completely, in this work, we propose a novel distributed multimedia scheduling to satisfy the objectives: 1) Develop a general cloud-based multimedia scheduling model which is able to apply to different multimedia applications and service platforms; 2) Design a distributed scheduling algorithm in which each user makes a decision based on its local information without knowing the others' information; 3) The computational complexity of the proposed scheduling algorithm is low and it is asymptotically optimal in any case. Numerous simulations have demonstrated that the proposed scheduling can work well in all the cloud service environments.

An Intelligent Machine Learning Inspired Optimization Algorithm to Enhance Secured Data Transmission in IoT Cloud Ecosystem

  • Ankam, Sreejyothsna;Reddy, N.Sudhakar
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.83-90
    • /
    • 2022
  • Traditional Cloud Computing would be unable to safely host IoT data due to its high latency as the number of IoT sensors and physical devices accommodated on the Internet grows by the day. Because of the difficulty of processing all IoT large data on Cloud facilities, there hasn't been enough research done on automating the security of all components in the IoT-Cloud ecosystem that deal with big data and real-time jobs. It's difficult, for example, to build an automatic, secure data transfer from the IoT layer to the cloud layer, which incorporates a large number of scattered devices. Addressing this issue this article presents an intelligent algorithm that deals with enhancing security aspects in IoT cloud ecosystem using butterfly optimization algorithm.

CTaG: An Innovative Approach for Optimizing Recovery Time in Cloud Environment

  • Hung, Pham Phuoc;Aazam, Mohammad;Huh, Eui-Nam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.4
    • /
    • pp.1282-1301
    • /
    • 2015
  • Traditional infrastructure has been superseded by cloud computing, due to its cost-effective and ubiquitous computing model. Cloud computing not only brings multitude of opportunities, but it also bears some challenges. One of the key challenges it faces is recovery of computing nodes, when an Information Technology (IT) failure occurs. Since cloud computing mainly depends upon its nodes, physical servers, that makes it very crucial to recover a failed node in time and seamlessly, so that the customer gets an expected level of service. Work has already been done in this regard, but it has still proved to be trivial. In this study, we present a Cost-Time aware Genetic scheduling algorithm, referred to as CTaG, not only to globally optimize the performance of the cloud system, but also perform recovery of failed nodes efficiently. While modeling our work, we have particularly taken into account the factors of network bandwidth and customer's monetary cost. We have implemented our algorithm and justify it through extensive simulations and comparison with similar existing studies. The results show performance gain of our work over the others, in some particular scenarios.

A Detail Survey of Horizontal Global Radiation and Cloud Cover for the Installation of Solar Photovoltaic System in Korea (국내 태양광시스템 설치를 위한 수평면 전일사량과 운량 정밀조사)

  • Jo, Dok-Ki;Kang, Young-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.3
    • /
    • pp.1-9
    • /
    • 2010
  • Since the horizontal global radiation and cloud cover are a main factor for designing any solar photovoltaic system, it is necessary to evaluate its characteristics all over the country. The work presented here are the investigation of horizontal global radiation and cloud cover in Korea. The data utilized in the investigation consist of horizontal global radiation and cloud cover collected for 27 years(1982. 12~2008. 12) at measuring stations across the country. The analysis shows that the annual-average daily horizontal global radiation is $3.61\;kWh/m^2$ and the annual-average daily cloud cover is 5.1 in Korea. We also constructed the contour map of cloud cover in Korea by interpolating actually measured data across the country.

Mitigating Threats and Security Metrics in Cloud Computing

  • Kar, Jayaprakash;Mishra, Manoj Ranjan
    • Journal of Information Processing Systems
    • /
    • v.12 no.2
    • /
    • pp.226-233
    • /
    • 2016
  • Cloud computing is a distributed computing model that has lot of drawbacks and faces difficulties. Many new innovative and emerging techniques take advantage of its features. In this paper, we explore the security threats to and Risk Assessments for cloud computing, attack mitigation frameworks, and the risk-based dynamic access control for cloud computing. Common security threats to cloud computing have been explored and these threats are addressed through acceptable measures via governance and effective risk management using a tailored Security Risk Approach. Most existing Threat and Risk Assessment (TRA) schemes for cloud services use a converse thinking approach to develop theoretical solutions for minimizing the risk of security breaches at a minimal cost. In our study, we propose an improved Attack-Defense Tree mechanism designated as iADTree, for solving the TRA problem in cloud computing environments.

Emerging IT Services Model : Cloud Business Model, Focused on M-Pesa Case (새로운 IT 서비스 모델, 클라우드 비즈니스 모델 : M-Pesa 사례 분석)

  • Hahm, Yukun;Youn, Youngsoo;Kang, Hansoo;Kim, Jinsung
    • Journal of Information Technology Services
    • /
    • v.11 no.3
    • /
    • pp.287-304
    • /
    • 2012
  • Cloud computing, which means a new way of deploying information technology(IT) in organizations as a service and charging per use, has a deep impact on organizations' IT accessibility, agility and efficiency of its usage. More than that, the emergence of cloud computing surpasses a mere technological innovation, making business model innovation possible. We call this innovation realized by could computing a cloud business model. This study develops a comprehensive framework of business model, first, and then defines and analyzes the cloud business model through this framework. This study also examines the case of M-Pesa mobile payment as a cloud business model in which a new value creation and profit realization schemes have been realized and industry value network has changed. Finally, this study discusses the business implications from this new business model.

Analysis of of Horizontal Global Radiation and Cloud Cover in Korea (국내 수평면 전일사량과 운량 분석)

  • Jo, Dok-Ki;Yun, Chang-Yeol;Kim, Kwang-Deuk;Kang, Young-Heack
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.124-129
    • /
    • 2011
  • Since the horizontal global radiation and cloud cover are a main factor for designing any solar energy system, it is necessary to evaluate its characteristics all over the country. The work presented here are the investigation of horizontal global radiation and cloud cover in Korea. The data utilized in the investigation consist of horizontal global radiation and cloud cover collected for 27 years(1982.12~2008.12) at measuring stations across the country. The analysis shows that the annual-average daily horizontal global radiation is $3.61kWh/m^2$ and the annual-average daily cloud cover is 5.1 in Korea. We also constructed the contour map of cloud cover in Korea by interpolating actually measured data across the country.

  • PDF

Template-Based Reconstruction of Surface Mesh Animation from Point Cloud Animation

  • Park, Sang Il;Lim, Seong-Jae
    • ETRI Journal
    • /
    • v.36 no.6
    • /
    • pp.1008-1015
    • /
    • 2014
  • In this paper, we present a method for reconstructing a surface mesh animation sequence from point cloud animation data. We mainly focus on the articulated body of a subject - the motion of which can be roughly described by its internal skeletal structure. The point cloud data is assumed to be captured independently without any inter-frame correspondence information. Using a template model that resembles the given subject, our basic idea for reconstructing the mesh animation is to deform the template model to fit to the point cloud (on a frame-by-frame basis) while maintaining inter-frame coherence. We first estimate the skeletal motion from the point cloud data. After applying the skeletal motion to the template surface, we refine it to fit to the point cloud data. We demonstrate the viability of the method by applying it to reconstruct a fast dancing motion.

An Exploratory Study of Cloud Service Level Agreements - State of the Art Review

  • Saravanan, K.;Rajaram, M.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.843-871
    • /
    • 2015
  • Cloud computing evolve as a cost effective business model for IT companies to focus on their core business without perturbing on infrastructure related issues. Hence, major IT firms and Small & Medium Enterprises (SME) are adopting cloud services on rental basis from cloud providers. Cloud Service level agreements (SLA) act as a key liaison between consumers and providers on renting Anything as a Service (AaaS). Design of such an agreement must aim for greater profit to providers as well as assured availability of services to consumers. However in reality, cloud SLA is not satisfying the parties involved because of its inherent complex nature and issues. Also currently most of the agreements are unilateral to favour the provider. This study focuses on comprehensive, 360-degree survey on different aspects of the cloud service agreements. We detailed the life cycle of SLA based on negotiation, different types of SLA, current standards, languages & characteristics, metrics and issues involved in it. This study will help the cloud actors to understand and evaluate the agreements and to make firm decision on negotiation. The need for standardized, bilateral, semantic SLA has also been proposed.

Low Cost Cloud-Assisted Peer to Peer Live Streaming

  • Alghazawy, Bahaa Aldeen;Fujita, Satoshi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1732-1750
    • /
    • 2016
  • Recently, Peer-to-Peer (P2P) live streaming assisted by the cloud computing has attracted considerable attention to improve the reliability of the P2P such as the resilience to peer churn and the shortage of upload capacity. The cost of cloud-assistance is comprised of the number of requests issued to the cloud and the amount of data fetched from the cloud. In this paper, we propose three techniques to reduce the cost of such a cloud-assistance.More concretely, in the proposed method, 1) each peer which lost its parent in the overlay can find a new parent by referring to the information registered in the cloud, 2) several peers which proactively fetch chunks from the cloud are dynamically invested, and 3) the number of requests issued to the cloud is reduced by allowing peers to fetch a collection of chunks using a single request. The performance of the proposed method is evaluated by simulation. The simulation results indicate that it reduces the cost of conventional scheme by 46% while guaranteeing the quality of live streaming service.