• Title/Summary/Keyword: Cloud Environment

Search Result 1,337, Processing Time 0.033 seconds

An Authority-Based Efficient Key Management Protocol for Cloud Environment (클라우드 환경을 위한 효율적인 권한 기반 키 설립 프로토콜)

  • Choi, Jeong-hee;Lee, Sang-ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.5
    • /
    • pp.1035-1045
    • /
    • 2018
  • Recently, with the development of IT technology, authentication methods of users using cloud services have been diversified. However, research on providing authentication information of a user using a cloud service securely according to authority has not been make until now. In this paper, we propose a key establishment protocol which can perform split authentication using secret key and access control key according to the role authority of user in Intra cloud environment. The proposed protocol generates the access control key and secret key of the user by using the attributes of the user and the generated random number($t_1$, $t_2$), and classifies the roles according to the user's authority after generating the key. Unnecessary operation processes can be reduced. As a result of the performance evaluation, the proposed protocol guarantees the security against various type of attacks that may occur in the cloud environment because the user is authenticated by dividing the access control key and secret key. The size of the ciphertext used to establish the key could be reduced by ${\sum}+1$ more than the existing protocol.

A Resource Clustering Method Considering Weight of Application Characteristic in Hybrid Cloud Environment (하이브리드 클라우드 환경에서의 응용 특성 가중치를 고려한 자원 군집화 기법)

  • Oh, Yoori;Kim, Yoonhee
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.8
    • /
    • pp.481-486
    • /
    • 2017
  • There are many scientists who want to perform experiments in a cloud environment, and pay-per-use services allow scientists to pay only for cloud services that they need. However, it is difficult for scientists to select a suitable set of resources since those resources are comprised of various characteristics. Therefore, classification is needed to support the effective utilization of cloud resources. Thus, a dynamic resource clustering method is needed to reflect the characteristics of the application that scientists want to execute. This paper proposes a resource clustering analysis method that takes into account the characteristics of an application in a hybrid cloud environment. The resource clustering analysis applies a Self-Organizing Map and K-means algorithm to dynamically cluster similar resources. The results of the experiment indicate that the proposed method can classify a similar resource cluster by reflecting the application characteristics.

Eco-System: REC Price Prediction Simulation in Cloud Computing Environment (Eco-System: 클라우드 컴퓨팅환경에서 REC 가격예측 시뮬레이션)

  • Cho, Kyucheol
    • Journal of the Korea Society for Simulation
    • /
    • v.23 no.4
    • /
    • pp.1-8
    • /
    • 2014
  • Cloud computing helps big data processing to make various information using IT resources. The government has to start the RPS(Renewable Portfolio Standard) and induce the production of electricity using renewable energy equipment. And the government manages system to gather big data that is distributed geographically. The companies can purchase the REC(Renewable Energy Certificate) to other electricity generation companies to fill shortage among their duty from the system. Because of the RPS use voluntary competitive market in REC trade and the prices have the large variation, RPS is necessary to predict the equitable REC price using RPS big data. This paper proposed REC price prediction method base on fuzzy logic using the price trend and trading condition infra in REC market, that is modeled in cloud computing environment. Cloud computing helps to analyze correlation and variables that act on REC price within RPS big data and the analysis can be predict REC price by simulation. Fuzzy logic presents balanced REC average trading prices using the trading quantity and price. The model presents REC average trading price using the trading quantity and price and the method helps induce well-converged price in the long run in cloud computing environment.

Sensitivity Test of the Parameterization Methods of Cloud Droplet Activation Process in Model Simulation of Cloud Formation (구름방울 활성화 과정 모수화 방법에 따른 구름 형성의 민감도 실험)

  • Kim, Ah-Hyun;Yum, Seong Soo;Chang, Dong Yeong
    • Atmosphere
    • /
    • v.28 no.2
    • /
    • pp.211-222
    • /
    • 2018
  • Cloud droplet activation process is well described by $K{\ddot{o}}hler$ theory and several parameterizations based on $K{\ddot{o}}hler$ theory are used in a wide range of models to represent this process. Here, we test the two different method of calculating the solute effect in the $K{\ddot{o}}hler$ equation, i.e., osmotic coefficient method (OSM) and ${\kappa}-K{\ddot{o}}hler$ method (KK). To do that, each method is implemented in the cloud droplet activation parameterization module of WRF-CHEM (Weather Research and Forecasting model coupled with Chemistry) model. It is assumed that aerosols are composed of five major components (i.e., sulfate, organic matter, black carbon, mineral dust, and sea salt). Both methods calculate similar representative hygroscopicity parameter values of 0.2~0.3 over the land, and 0.6~0.7 over the ocean, which are close to estimated values in previous studies. Simulated precipitation, and meteorological variables (i.e., specific heat and temperature) show good agreement with reanalysis. Spatial patterns of precipitation and liquid water path from model results and satellite data show similarity in general, but on regional scale spatial patterns and intensity show some discrepancy. However, meteorological variables, precipitation, and liquid water path do not show significant differences between OSM and KK simulations. So we suggest that the relatively simple KK method can be a good alternative to the OSM method that requires various information of density, molecular weight and dissociation number of each individual species in calculating the solute effect.

Software Architecture of the Grid for implementing the Cloud Computing of the High Availability (고가용성 클라우드 컴퓨팅 구축을 위한 그리드 소프트웨어 아키텍처)

  • Lee, Byoung-Yup;Park, Jun-Ho;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.2
    • /
    • pp.19-29
    • /
    • 2012
  • Currently, cloud computing technology is being supplied in various service forms and it is becoming a ground breaking service which provides usage of storage service, data and software while user is not involved in technical background such as physical location of service or system environment. cloud computing technology has advantages that it can use easily as many IT resources as it wants freely regardless of hardware issues required by a variety of systems and service level required by infrastructure. Also, since it has a strength that it can choose usage of resource about business model due to various internet-based technologies, provisioning technology and virtualization technology are being paid attention as main technologies. These technologies are ones of important technology elements which help web-based users approach freely and install according to user environment. Therefore, this thesis introduces software-related technologies and architectures in an aspect of grid for building up high availability cloud computing environment by analysis about cloud computing technology trend.

Build the Teaching Practice System based on Cloud Computing for Stabilization through Performance Evaluation (성능분석을 통한 안정화된 클라우드 컴퓨팅 기반 교육 실습 시스템 구축)

  • Yoon, JunWeon;Song, Ui-Sung
    • Journal of Digital Contents Society
    • /
    • v.15 no.5
    • /
    • pp.595-602
    • /
    • 2014
  • Cloud computing is already well known paradigm that a support computing resource flexible and scalable to users as the want in distributed computing environment. Actually, cloud computing can be implemented and provided by virtualization technology. Also, various products are released or under development. In this paper, we built the teaching practice system using cloud computing and evaluated practical environment which constructed over a virtual machine. Virtualization-based cloud computing provides optimized computing resources, as well as easy to manage practical resource and result. Therefore, we can save the time for configuration of practice environment. In the view of faculty, they can easily handle the practice result. Also, those practice condition reuse comfortably and apply to various configuration simply. And then we can increase capabilities and availabilities of limited resources. Additionally, we measure the performance requirements for educational applications through evaluation of virtual-based teaching practical system in advance.

A Predictive Virtual Machine Placement in Decentralized Cloud using Blockchain

  • Suresh B.Rathod
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.60-66
    • /
    • 2024
  • Host's data during transmission. Data tempering results in loss of host's sensitive information, which includes number of VM, storage availability, and other information. In the distributed cloud environment, each server (computing server (CS)) configured with Local Resource Monitors (LRMs) which runs independently and performs Virtual Machine (VM) migrations to nearby servers. Approaches like predictive VM migration [21] [22] by each server considering nearby server's CPU usage, roatative decision making capacity [21] among the servers in distributed cloud environment has been proposed. This approaches usage underlying server's computing power for predicting own server's future resource utilization and nearby server's resource usage computation. It results in running VM and its running application to remain in waiting state for computing power. In order to reduce this, a decentralized decision making hybrid model for VM migration need to be proposed where servers in decentralized cloud receives, future resource usage by analytical computing system and takes decision for migrating VM to its neighbor servers. Host's in the decentralized cloud shares, their detail with peer servers after fixed interval, this results in chance to tempering messages that would be exchanged in between HC and CH. At the same time, it reduces chance of over utilization of peer servers, caused due to compromised host. This paper discusses, an roatative decisive (RD) approach for VM migration among peer computing servers (CS) in decentralized cloud environment, preserving confidentiality and integrity of the host's data. Experimental result shows that, the proposed predictive VM migration approach reduces extra VM migration caused due over utilization of identified servers and reduces number of active servers in greater extent, and ensures confidentiality and integrity of peer host's data.

A Study on the Security Requirements Analysis to Build a Zero Trust-Based Remote Work Environment (제로트러스트 기반의 원격 근무 환경을 구축하기 위한 보안요구사항 분석 연구)

  • Hae-na Kim;Ye-jun Kim;Seung-joo Kim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.1
    • /
    • pp.83-102
    • /
    • 2024
  • Recently, as the use of the cloud increases year by year and remote work within the enterprise has become one of the new types of work, the security of the cloud-based remote work environment has become important. The introduction of zero trust is required due to the limitations of the existing perimeter security model that assumes that everything in the internal network is safe. Accordingly, NIST and DoD published standards related to zero trust architecture, but the security requirements of that standard describe only logical architecture at the abstract level. Therefore, this paper intends to present more detailed security requirements compared to NIST and DoD standards by performing threat modeling for OpenStack clouds. After that, this research team performed a security analysis of commercial cloud services to verify the requirements. As a result of the security analysis, we identified security requirements that each cloud service was not satisfied with. We proposed potential threats and countermeasures for cloud services with zero trust, which aims to help build a secure zero trust-based remote working environment.

Adaptive Resource Management Method base on ART in Cloud Computing Environment (클라우드 컴퓨팅 환경에서 빅데이터 처리를 위한 ART 기반의 적응형 자원관리 방법)

  • Cho, Kyucheol;Kim, JaeKwon
    • Journal of the Korea Society for Simulation
    • /
    • v.23 no.4
    • /
    • pp.111-119
    • /
    • 2014
  • The cloud environment need resource management method that to enable the big data issue and data analysis technology. Existing resource management uses the limited calculation method, therefore concentrated the resource bias problem. To solve this problem, the resource management requires the learning-based scheduling using resource history information. In this paper, we proposes the ART (Adaptive Resonance Theory)-based adaptive resource management. Our proposed method assigns the job to the suitable method with the resource monitoring and history management in cloud computing environment. The proposed method utilizes the unsupervised learning method. Our goal is to improve the data processing and service stability with the adaptive resource management. The propose method allow the systematic management, and utilize the available resource efficiently.

Study of Data Placement Schemes for SNS Services in Cloud Environment

  • Chen, Yen-Wen;Lin, Meng-Hsien;Wu, Min-Yan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3203-3215
    • /
    • 2015
  • Due to the high growth of SNS population, service scalability is one of the critical issues to be addressed. The cloud environment provides the flexible computing and storage resources for services deployment, which fits the characteristics of scalable SNS deployment. However, if the SNS related information is not properly placed, it will cause unbalance load and heavy transmission cost on the storage virtual machine (VM) and cloud data center (CDC) network. In this paper, we characterize the SNS into a graph model based on the users' associations and interest correlations. The node weight represents the degree of associations, which can be indexed by the number of friends or data sources, and the link weight denotes the correlation between users/data sources. Then, based on the SNS graph, the two-step algorithm is proposed in this paper to determine the placement of SNS related data among VMs. Two k-means based clustering schemes are proposed to allocate social data in proper VM and physical servers for pre-configured VM and dynamic VM environment, respectively. The experimental example was conducted and to illustrate and compare the performance of the proposed schemes.