Journal of the Korea Institute of Information Security & Cryptology
/
v.28
no.5
/
pp.1035-1045
/
2018
Recently, with the development of IT technology, authentication methods of users using cloud services have been diversified. However, research on providing authentication information of a user using a cloud service securely according to authority has not been make until now. In this paper, we propose a key establishment protocol which can perform split authentication using secret key and access control key according to the role authority of user in Intra cloud environment. The proposed protocol generates the access control key and secret key of the user by using the attributes of the user and the generated random number($t_1$, $t_2$), and classifies the roles according to the user's authority after generating the key. Unnecessary operation processes can be reduced. As a result of the performance evaluation, the proposed protocol guarantees the security against various type of attacks that may occur in the cloud environment because the user is authenticated by dividing the access control key and secret key. The size of the ciphertext used to establish the key could be reduced by ${\sum}+1$ more than the existing protocol.
There are many scientists who want to perform experiments in a cloud environment, and pay-per-use services allow scientists to pay only for cloud services that they need. However, it is difficult for scientists to select a suitable set of resources since those resources are comprised of various characteristics. Therefore, classification is needed to support the effective utilization of cloud resources. Thus, a dynamic resource clustering method is needed to reflect the characteristics of the application that scientists want to execute. This paper proposes a resource clustering analysis method that takes into account the characteristics of an application in a hybrid cloud environment. The resource clustering analysis applies a Self-Organizing Map and K-means algorithm to dynamically cluster similar resources. The results of the experiment indicate that the proposed method can classify a similar resource cluster by reflecting the application characteristics.
Cloud computing helps big data processing to make various information using IT resources. The government has to start the RPS(Renewable Portfolio Standard) and induce the production of electricity using renewable energy equipment. And the government manages system to gather big data that is distributed geographically. The companies can purchase the REC(Renewable Energy Certificate) to other electricity generation companies to fill shortage among their duty from the system. Because of the RPS use voluntary competitive market in REC trade and the prices have the large variation, RPS is necessary to predict the equitable REC price using RPS big data. This paper proposed REC price prediction method base on fuzzy logic using the price trend and trading condition infra in REC market, that is modeled in cloud computing environment. Cloud computing helps to analyze correlation and variables that act on REC price within RPS big data and the analysis can be predict REC price by simulation. Fuzzy logic presents balanced REC average trading prices using the trading quantity and price. The model presents REC average trading price using the trading quantity and price and the method helps induce well-converged price in the long run in cloud computing environment.
Cloud droplet activation process is well described by $K{\ddot{o}}hler$ theory and several parameterizations based on $K{\ddot{o}}hler$ theory are used in a wide range of models to represent this process. Here, we test the two different method of calculating the solute effect in the $K{\ddot{o}}hler$ equation, i.e., osmotic coefficient method (OSM) and ${\kappa}-K{\ddot{o}}hler$ method (KK). To do that, each method is implemented in the cloud droplet activation parameterization module of WRF-CHEM (Weather Research and Forecasting model coupled with Chemistry) model. It is assumed that aerosols are composed of five major components (i.e., sulfate, organic matter, black carbon, mineral dust, and sea salt). Both methods calculate similar representative hygroscopicity parameter values of 0.2~0.3 over the land, and 0.6~0.7 over the ocean, which are close to estimated values in previous studies. Simulated precipitation, and meteorological variables (i.e., specific heat and temperature) show good agreement with reanalysis. Spatial patterns of precipitation and liquid water path from model results and satellite data show similarity in general, but on regional scale spatial patterns and intensity show some discrepancy. However, meteorological variables, precipitation, and liquid water path do not show significant differences between OSM and KK simulations. So we suggest that the relatively simple KK method can be a good alternative to the OSM method that requires various information of density, molecular weight and dissociation number of each individual species in calculating the solute effect.
Currently, cloud computing technology is being supplied in various service forms and it is becoming a ground breaking service which provides usage of storage service, data and software while user is not involved in technical background such as physical location of service or system environment. cloud computing technology has advantages that it can use easily as many IT resources as it wants freely regardless of hardware issues required by a variety of systems and service level required by infrastructure. Also, since it has a strength that it can choose usage of resource about business model due to various internet-based technologies, provisioning technology and virtualization technology are being paid attention as main technologies. These technologies are ones of important technology elements which help web-based users approach freely and install according to user environment. Therefore, this thesis introduces software-related technologies and architectures in an aspect of grid for building up high availability cloud computing environment by analysis about cloud computing technology trend.
Cloud computing is already well known paradigm that a support computing resource flexible and scalable to users as the want in distributed computing environment. Actually, cloud computing can be implemented and provided by virtualization technology. Also, various products are released or under development. In this paper, we built the teaching practice system using cloud computing and evaluated practical environment which constructed over a virtual machine. Virtualization-based cloud computing provides optimized computing resources, as well as easy to manage practical resource and result. Therefore, we can save the time for configuration of practice environment. In the view of faculty, they can easily handle the practice result. Also, those practice condition reuse comfortably and apply to various configuration simply. And then we can increase capabilities and availabilities of limited resources. Additionally, we measure the performance requirements for educational applications through evaluation of virtual-based teaching practical system in advance.
International Journal of Computer Science & Network Security
/
v.24
no.4
/
pp.60-66
/
2024
Host's data during transmission. Data tempering results in loss of host's sensitive information, which includes number of VM, storage availability, and other information. In the distributed cloud environment, each server (computing server (CS)) configured with Local Resource Monitors (LRMs) which runs independently and performs Virtual Machine (VM) migrations to nearby servers. Approaches like predictive VM migration [21] [22] by each server considering nearby server's CPU usage, roatative decision making capacity [21] among the servers in distributed cloud environment has been proposed. This approaches usage underlying server's computing power for predicting own server's future resource utilization and nearby server's resource usage computation. It results in running VM and its running application to remain in waiting state for computing power. In order to reduce this, a decentralized decision making hybrid model for VM migration need to be proposed where servers in decentralized cloud receives, future resource usage by analytical computing system and takes decision for migrating VM to its neighbor servers. Host's in the decentralized cloud shares, their detail with peer servers after fixed interval, this results in chance to tempering messages that would be exchanged in between HC and CH. At the same time, it reduces chance of over utilization of peer servers, caused due to compromised host. This paper discusses, an roatative decisive (RD) approach for VM migration among peer computing servers (CS) in decentralized cloud environment, preserving confidentiality and integrity of the host's data. Experimental result shows that, the proposed predictive VM migration approach reduces extra VM migration caused due over utilization of identified servers and reduces number of active servers in greater extent, and ensures confidentiality and integrity of peer host's data.
Journal of the Korea Institute of Information Security & Cryptology
/
v.34
no.1
/
pp.83-102
/
2024
Recently, as the use of the cloud increases year by year and remote work within the enterprise has become one of the new types of work, the security of the cloud-based remote work environment has become important. The introduction of zero trust is required due to the limitations of the existing perimeter security model that assumes that everything in the internal network is safe. Accordingly, NIST and DoD published standards related to zero trust architecture, but the security requirements of that standard describe only logical architecture at the abstract level. Therefore, this paper intends to present more detailed security requirements compared to NIST and DoD standards by performing threat modeling for OpenStack clouds. After that, this research team performed a security analysis of commercial cloud services to verify the requirements. As a result of the security analysis, we identified security requirements that each cloud service was not satisfied with. We proposed potential threats and countermeasures for cloud services with zero trust, which aims to help build a secure zero trust-based remote working environment.
The cloud environment need resource management method that to enable the big data issue and data analysis technology. Existing resource management uses the limited calculation method, therefore concentrated the resource bias problem. To solve this problem, the resource management requires the learning-based scheduling using resource history information. In this paper, we proposes the ART (Adaptive Resonance Theory)-based adaptive resource management. Our proposed method assigns the job to the suitable method with the resource monitoring and history management in cloud computing environment. The proposed method utilizes the unsupervised learning method. Our goal is to improve the data processing and service stability with the adaptive resource management. The propose method allow the systematic management, and utilize the available resource efficiently.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.9
no.8
/
pp.3203-3215
/
2015
Due to the high growth of SNS population, service scalability is one of the critical issues to be addressed. The cloud environment provides the flexible computing and storage resources for services deployment, which fits the characteristics of scalable SNS deployment. However, if the SNS related information is not properly placed, it will cause unbalance load and heavy transmission cost on the storage virtual machine (VM) and cloud data center (CDC) network. In this paper, we characterize the SNS into a graph model based on the users' associations and interest correlations. The node weight represents the degree of associations, which can be indexed by the number of friends or data sources, and the link weight denotes the correlation between users/data sources. Then, based on the SNS graph, the two-step algorithm is proposed in this paper to determine the placement of SNS related data among VMs. Two k-means based clustering schemes are proposed to allocate social data in proper VM and physical servers for pre-configured VM and dynamic VM environment, respectively. The experimental example was conducted and to illustrate and compare the performance of the proposed schemes.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.