• Title/Summary/Keyword: Cloud Data Sharing

Search Result 149, Processing Time 0.036 seconds

Constant-Size Ciphertext-Policy Attribute-Based Data Access and Outsourceable Decryption Scheme (고정 크기 암호 정책 속성 기반의 데이터 접근과 복호 연산 아웃소싱 기법)

  • Hahn, Changhee;Hur, Junbeom
    • Journal of KIISE
    • /
    • v.43 no.8
    • /
    • pp.933-945
    • /
    • 2016
  • Sharing data by multiple users on the public storage, e.g., the cloud, is considered to be efficient because the cloud provides on-demand computing service at anytime and anywhere. Secure data sharing is achieved by fine-grained access control. Existing symmetric and public key encryption schemes are not suitable for secure data sharing because they support 1-to-1 relationship between a ciphertext and a secret key. Attribute based encryption supports fine-grained access control, however it incurs linearly increasing ciphertexts as the number of attributes increases. Additionally, the decryption process has high computational cost so that it is not applicable in case of resource-constrained environments. In this study, we propose an efficient attribute-based secure data sharing scheme with outsourceable decryption. The proposed scheme guarantees constant-size ciphertexts irrespective of the number of attributes. In case of static attributes, the computation cost to the user is reduced by delegating approximately 95.3% of decryption operations to the more powerful storage systems, whereas 72.3% of decryption operations are outsourced in terms of dynamic attributes.

Distributed Access Privilege Management for Secure Cloud Business (안전한 클라우드 비즈니스를 위한 접근권한 분산관리)

  • Song, You-Jin;Do, Jeong-Min
    • The KIPS Transactions:PartC
    • /
    • v.18C no.6
    • /
    • pp.369-378
    • /
    • 2011
  • To ensure data confidentiality and fine-grained access control in business environment, system model using KP-ABE(Key Policy-Attribute Based Encryption) and PRE(Proxy Re-Encryption) has been proposed recently. However, in previous study, data confidentiality has been effected by decryption right concentrated on cloud server. Also, Yu's work does not consider a access privilege management, so existing work become dangerous to collusion attack between malicious user and cloud server. To resolve this problem, we propose secure system model against collusion attack through dividing data file into header which is sent to privilege manager group and body which is sent to cloud server. And we construct the model of access privilege management using AONT based XOR threshold Secret Sharing, In addition, our scheme enable to grant weight for access privilege using XOR Share. In chapter 4, we differentiate existing scheme and proposed scheme.

CP-ABE Access Control that Block Access of Withdrawn Users in Dynamic Cloud

  • Hwang, Yong-Woon;Lee, Im-Yeong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.4136-4156
    • /
    • 2020
  • Recently, data can be safely shared or stored using the infrastructure of cloud computing in various fields. However, issues such as data security and privacy affect cloud environments. Thus, a variety of security technologies are required, one of them is security technology using CP-ABE. Research into the CP-ABE scheme is currently ongoing, but the existing CP-ABE schemes can pose security threats and are inefficient. In terms of security, the CP-ABE approach should be secure against user collusion attacks and masquerade attacks. In addition, in a dynamic cloud environment where users are frequently added or removed, they must eliminate user access when they leave, and so users will not be able to access the cloud after removal. A user who has left should not be able to access the cloud with the existing attributes, secret key that had been granted. In addition, the existing CP-ABE scheme increases the size of the ciphertext according to the number of attributes specified by the data owner. This leads to inefficient use of cloud storage space and increases the amount of operations carried out by the user, which becomes excessive when the number of attributes is large. In this paper, CP-ABE access control is proposed to block access of withdrawn users in dynamic cloud environments. This proposed scheme focuses on the revocation of the attributes of the withdrawn users and the output of a ciphertext of a constant-size, and improves the efficiency of the user decryption operation through outsourcing.

Development of Non-Contact Construction Management Supporting System For Cost Reduction and Duration Reduction By Real-Time Data Sharing (건설공사에서 실시간 현장 정보 공유에 의한 원가절감, 공기단축을 위한 비대면 건설사업관리 솔루션 개발)

  • Kang, Sang-Chan;Kim, Min-Jin;Jang, Myunghoun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.323-324
    • /
    • 2021
  • This study is to develop a non-contact construction project management solution that can reduce cost and construction period through on-site information sharing, minimizing contact with others by COVID19, and improving the productivity of the construction industry. Decisions, checklists, and execution rates of construction costs can be checked with smart devices through sharing on-site photos and videos, exchanging opinions. Details and checklist data stored on cloud servers of sites that apply non-face-to-face construction project management solutions will be used as data for analyzing amounts and construction periods depending on the size of the construction. Real-time field information sharing will reduce expected problems and waste factors, expand communication channels with users to prevent or minimize construction disputes and claims, and contribute to the expansion and growth of new research industry markets in construction technology.

  • PDF

Design of Secure Scheme based on Bio-information Optimized for Car-sharing Cloud (카 쉐어링 클라우드 환경에서 최적화된 바이오 정보 기반 보안 기법 설계)

  • Lee, Kwang-Hyoung;Park, Sang-Hyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.469-478
    • /
    • 2019
  • Car-sharing services have been settled on as a new type of public transportation owing to their enhanced convenience, expanded awareness of practical consumption patterns, the inspiration for environmental conscientiousness, and the diffusion of smart phones following the economic crisis. With development of the market, many people have started using such services. However, security is still an issue. Damage is expected since IDs and passwords are required for log-in when renting and controlling the vehicles. The protocol suggested in this study uses bio-information, providing an optimized service, and convenient (but strong) authentication with various service-provider clouds registering car big data about users through brokers. If using the techniques suggested here, it is feasible to reduce the exposure of the bio-information, and to receive service from multiple service-provider clouds through one particular broker. In addition, the proposed protocol reduces public key operations and session key storage by 20% on mobile devices, compared to existing car-sharing platforms, and because it provides convenient, but strong, authentication (and therefore constitutes a secure channel), it is possible to proceed with secure communications. It is anticipated that the techniques suggested in this study will enhance secure communications and user convenience in the future car-sharing-service cloud environment.

Traceable Dynamic Public Auditing with Identity Privacy Preserving for Cloud Storage

  • Zhang, Yinghui;Zhang, Tiantian;Guo, Rui;Xu, Shengmin;Zheng, Dong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5653-5672
    • /
    • 2019
  • In cloud computing era, an increasing number of resource-constrained users outsource their data to cloud servers. Due to the untrustworthiness of cloud servers, it is important to ensure the integrity of outsourced data. However, most of existing solutions still have challenging issues needing to be addressed, such as the identity privacy protection of users, the traceability of users, the supporting of dynamic user operations, and the publicity of auditing. In order to tackle these issues simultaneously, in this paper, we propose a traceable dynamic public auditing scheme with identity privacy preserving for cloud storage. In the proposed scheme, a single user, including a group manager, is unable to know the signer's identity. Furthermore, our scheme realizes traceability based on a secret sharing mechanism and supports dynamic user operations. Based on the security and efficiency analysis, it is shown that our scheme is secure and efficient.

A Quantitative Approach to Minimize Energy Consumption in Cloud Data Centres using VM Consolidation Algorithm

  • M. Hema;S. KanagaSubaRaja
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.312-334
    • /
    • 2023
  • In large-scale computing, cloud computing plays an important role by sharing globally-distributed resources. The evolution of cloud has taken place in the development of data centers and numerous servers across the globe. But the cloud information centers incur huge operational costs, consume high electricity and emit tons of dioxides. It is possible for the cloud suppliers to leverage their resources and decrease the consumption of energy through various methods such as dynamic consolidation of Virtual Machines (VMs), by keeping idle nodes in sleep mode and mistreatment of live migration. But the performance may get affected in case of harsh consolidation of VMs. So, it is a desired trait to have associate degree energy-performance exchange without compromising the quality of service while at the same time reducing the power consumption. This research article details a number of novel algorithms that dynamically consolidate the VMs in cloud information centers. The primary objective of the study is to leverage the computing resources to its best and reduce the energy consumption way behind the Service Level Agreement (SLA)drawbacks relevant to CPU load, RAM capacity and information measure. The proposed VM consolidation Algorithm (PVMCA) is contained of four algorithms: over loaded host detection algorithm, VM selection algorithm, VM placement algorithm, and under loading host detection algorithm. PVMCA is dynamic because it uses dynamic thresholds instead of static thresholds values, which makes it suggestion for real, unpredictable workloads common in cloud data centers. Also, the Algorithms are adaptive because it inevitably adjusts its behavior based on the studies of historical data of host resource utilization for any application with diverse workload patterns. Finally, the proposed algorithm is online because the algorithms are achieved run time and make an action in response to each request. The proposed algorithms' efficiency was validated through different simulations of extensive nature. The output analysis depicts the projected algorithms scaled back the energy consumption up to some considerable level besides ensuring proper SLA. On the basis of the project algorithms, the energy consumption got reduced by 22% while there was an improvement observed in SLA up to 80% compared to other benchmark algorithms.

De-Centralized Information Flow Control for Cloud Virtual Machines with Blowfish Encryption Algorithm

  • Gurav, Yogesh B.;Patil, Bankat M.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.235-247
    • /
    • 2021
  • Today, the cloud computing has become a major demand of many organizations. The major reason behind this expansion is due to its cloud's sharing infrastructure with higher computing efficiency, lower cost and higher fle3xibility. But, still the security is being a hurdle that blocks the success of the cloud computing platform. Therefore, a novel Multi-tenant Decentralized Information Flow Control (MT-DIFC) model is introduced in this research work. The proposed system will encapsulate four types of entities: (1) The central authority (CA), (2) The encryption proxy (EP), (3) Cloud server CS and (4) Multi-tenant Cloud virtual machines. Our contribution resides within the encryption proxy (EP). Initially, the trust level of all the users within each of the cloud is computed using the proposed two-stage trust computational model, wherein the user is categorized bas primary and secondary users. The primary and secondary users vary based on the application and data owner's preference. Based on the computed trust level, the access privilege is provided to the cloud users. In EP, the cipher text information flow security strategy is implemented using the blowfish encryption model. For the data encryption as well as decryption, the key generation is the crucial as well as the challenging part. In this research work, a new optimal key generation is carried out within the blowfish encryption Algorithm. In the blowfish encryption Algorithm, both the data encryption as well as decryption is accomplishment using the newly proposed optimal key. The proposed optimal key has been selected using a new Self Improved Cat and Mouse Based Optimizer (SI-CMBO), which has been an advanced version of the standard Cat and Mouse Based Optimizer. The proposed model is validated in terms of encryption time, decryption time, KPA attacks as well.

A Study of Security Risk Analysis for Public IaaS Cloud Certification (공공 IaaS 클라우드 인증제도에 적용할 위험분석 방법에 대한 연구)

  • Kim, Sun-Jib;Kim, Ki-Young
    • Convergence Security Journal
    • /
    • v.15 no.5
    • /
    • pp.9-15
    • /
    • 2015
  • Cloud computing has emerged with promise to decrease the cost of server additional cost and expanding the data storage and ease for computer resource sharing and apply the new technologies. However, Cloud computing also raises many new security concerns due to the new structure of the cloud service models. Therefore, several cloud service certification system were performed in the world in order to meet customers need which is the safe and reliable cloud service. This paper we propose the new risk analysis method different compare with existing method for secure the reliability of certification considering public IaaS(Infrastructure as a Service) cloud service properties.

GRID BASED ENERGY EFFICIENT AND SECURED DATA TRANSACTION FOR CLOUD ASSISTED WSN-IOT

  • L. SASIREGA;C. SHANTHI
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.1
    • /
    • pp.95-105
    • /
    • 2023
  • To make the network energy efficient and to protect the network from malignant user's energy efficient grid based secret key sharing scheme is proposed. The cost function is evaluated to select the optimal nodes for carrying out the data transaction process. The network is split into equal number of grids and each grid is placed with certain number of nodes. The node cost function is estimated for all the nodes present in the network. Once the optimal energy proficient nodes are selected then the data transaction process is carried out in a secured way using malicious nodes filtration process. Therefore, the message is transmitted in a secret sharing method to the end user and this process makes the network more efficient. The proposed work is evaluated in network simulated and the performance of the work are analysed in terms of energy, delay, packet delivery ratio, and false detection ratio. From the result, we observed that the work outperforms the other works and achieves better energy and reduced packet rate.