• Title/Summary/Keyword: Cloud Data Centres

Search Result 3, Processing Time 0.023 seconds

Virtual Machine Placement Methods using Metaheuristic Algorithms in a Cloud Environment - A Comprehensive Review

  • Alsadie, Deafallah
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.147-158
    • /
    • 2022
  • Cloud Computing offers flexible, on demand, ubiquitous resources for cloud users. Cloud users are provided computing resources in a virtualized environment. In order to meet the growing demands for computing resources, data centres contain a large number of physical machines accommodating multiple virtual machines. However, cloud data centres cannot utilize their computing resources to their total capacity. Several policies have been proposed for improving energy proficiency and computing resource utilization in cloud data centres. Virtual machine placement is an effective method involving efficient mapping of virtual machines to physical machines. However, the availability of many physical machines accommodating multiple virtual machines in a data centre has made the virtual machine placement problem a non deterministic polynomial time hard (NP hard) problem. Metaheuristic algorithms have been widely used to solve the NP hard problems of multiple and conflicting objectives, such as the virtual machine placement problem. In this context, we presented essential concepts regarding virtual machine placement and objective functions for optimizing different parameters. This paper provides a taxonomy of metaheuristic algorithms for the virtual machine placement method. It is followed by a review of prominent research of virtual machine placement methods using meta heuristic algorithms and comparing them. Finally, this paper provides a conclusion and future research directions in virtual machine placement of cloud computing.

Mitigating TCP Incast Issue in Cloud Data Centres using Software-Defined Networking (SDN): A Survey

  • Shah, Zawar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5179-5202
    • /
    • 2018
  • Transmission Control Protocol (TCP) is the most widely used protocol in the cloud data centers today. However, cloud data centers using TCP experience many issues as TCP was designed based on the assumption that it would primarily be used in Wide Area Networks (WANs). One of the major issues with TCP in the cloud data centers is the Incast issue. This issue arises because of the many-to-one communication pattern that commonly exists in the modern cloud data centers. In many-to-one communication pattern, multiple senders simultaneously send data to a single receiver. This causes packet loss at the switch buffer which results in TCP throughput collapse that leads to high Flow Completion Time (FCT). Recently, Software-Defined Networking (SDN) has been used by many researchers to mitigate the Incast issue. In this paper, a detailed survey of various SDN based solutions to the Incast issue is carried out. In this survey, various SDN based solutions are classified into four categories i.e. TCP Receive Window based solutions, Tuning TCP Parameters based solutions, Quick Recovery based solutions and Application Layer based solutions. All the solutions are critically evaluated in terms of their principles, advantages, and shortcomings. Another important feature of this survey is to compare various SDN based solutions with respect to different performance metrics e.g. maximum number of concurrent senders supported, calculation of delay at the controller etc. These performance metrics are important for deployment of any SDN based solution in modern cloud data centers. In addition, future research directions are also discussed in this survey that can be explored to design and develop better SDN based solutions to the Incast issue.

A Quantitative Approach to Minimize Energy Consumption in Cloud Data Centres using VM Consolidation Algorithm

  • M. Hema;S. KanagaSubaRaja
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.312-334
    • /
    • 2023
  • In large-scale computing, cloud computing plays an important role by sharing globally-distributed resources. The evolution of cloud has taken place in the development of data centers and numerous servers across the globe. But the cloud information centers incur huge operational costs, consume high electricity and emit tons of dioxides. It is possible for the cloud suppliers to leverage their resources and decrease the consumption of energy through various methods such as dynamic consolidation of Virtual Machines (VMs), by keeping idle nodes in sleep mode and mistreatment of live migration. But the performance may get affected in case of harsh consolidation of VMs. So, it is a desired trait to have associate degree energy-performance exchange without compromising the quality of service while at the same time reducing the power consumption. This research article details a number of novel algorithms that dynamically consolidate the VMs in cloud information centers. The primary objective of the study is to leverage the computing resources to its best and reduce the energy consumption way behind the Service Level Agreement (SLA)drawbacks relevant to CPU load, RAM capacity and information measure. The proposed VM consolidation Algorithm (PVMCA) is contained of four algorithms: over loaded host detection algorithm, VM selection algorithm, VM placement algorithm, and under loading host detection algorithm. PVMCA is dynamic because it uses dynamic thresholds instead of static thresholds values, which makes it suggestion for real, unpredictable workloads common in cloud data centers. Also, the Algorithms are adaptive because it inevitably adjusts its behavior based on the studies of historical data of host resource utilization for any application with diverse workload patterns. Finally, the proposed algorithm is online because the algorithms are achieved run time and make an action in response to each request. The proposed algorithms' efficiency was validated through different simulations of extensive nature. The output analysis depicts the projected algorithms scaled back the energy consumption up to some considerable level besides ensuring proper SLA. On the basis of the project algorithms, the energy consumption got reduced by 22% while there was an improvement observed in SLA up to 80% compared to other benchmark algorithms.