• Title/Summary/Keyword: Cloud Computing Architecture

Search Result 187, Processing Time 0.023 seconds

Design and Evaluation of a Hierarchical Hybrid Content Delivery Scheme using Bloom Filter in Vehicular Cloud Environments (차량 클라우드 환경에서 블룸 필터를 이용한 계층적 하이브리드 콘텐츠 전송 방법의 설계 및 평가)

  • Bae, Ihn-Han
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1597-1608
    • /
    • 2016
  • Recently, a number of solutions were proposed to address the challenges and issues of vehicular networks. Vehicular Cloud Computing (VCC) is one of the solutions. The vehicular cloud computing is a new hybrid technology that has a remarkable impact on traffic management and road safety by instantly using vehicular resources. In this paper, we study an important vehicular cloud service, content-based delivery, that allows future vehicular cloud applications to store, share and search data totally within the cloud. We design a VCC-based system architecture for efficient sharing of vehicular contents, and propose a Hierarchical Hybrid Content Delivery scheme using Bloom Filter (H2CDBF) for efficient vehicular content delivery in Vehicular Ad-hoc Networks (VANETs). The performance of the proposed H2CDBF is evaluated through an analytical model, and is compared to the proactive content discovery scheme, Bloom-Filter Routing (BFR).

The Security and Privacy Issues of Fog Computing

  • Sultan Algarni;Khalid Almarhabi;Ahmed M. Alghamdi;Asem Alradadi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.25-31
    • /
    • 2023
  • Fog computing diversifies cloud computing by using edge devices to provide computing, data storage, communication, management, and control services. As it has a decentralised infrastructure that is capable of amalgamating with cloud computing as well as providing real-time data analysis, it is an emerging method of using multidisciplinary domains for a variety of applications; such as the IoT, Big Data, and smart cities. This present study provides an overview of the security and privacy concerns of fog computing. It also examines its fundamentals and architecture as well as the current trends, challenges, and potential methods of overcoming issues in fog computing.

Business Continuity and Data Backup in Cloud Computing Service and Architecture Study for Data Availability Zone (비즈니스 연속성을 위한 클라우드 컴퓨팅 서비스에서의 데이터 백업과 데이터 가용영역 아키텍쳐 연구)

  • Park, Young-ho;Park, Yongsuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2305-2309
    • /
    • 2016
  • Cloud Computing Service should support efficiency and stability. United States of America, for example, provides FedRAMP (Federal Risk and Authorization Management Program) accreditation to certify cloud computing service and hence growth of computing service industry is giving benefits of cost reduction and efficiency to companies. However, the use of computing service brings more risk than ever. Because cloud computing holds all the data of multiple companies, problems such as hacking bring out control loss of service and as a result total data of companies can be lost. Unfortunately, cloud computing certification programs do not have any good solutions for this data loss and companies may lose all the important data without any proper data backup. This paper studies such problems in terms of backup problem and provides Data Availability Zone solution for recovery and safe saving of data so that computing service can offer better efficiency and stability.

Clustering-Based Mobile Gateway Management in Integrated CRAHN-Cloud Network

  • Hou, Ling;Wong, Angus K.Y.;Yeung, Alan K.H.;Choy, Steven S.O.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.2960-2976
    • /
    • 2018
  • The limited storage and computing capacity hinder the development of cognitive radio ad hoc networks (CRAHNs). To solve the problem, a new paradigm of cloud-based CRAHN has been proposed, in which a CRAHN will make use of the computation and storage resources of the cloud. This paper envisions an integrated CRAHN-cloud network architecture. In this architecture, some cognitive radio users (CUs) who satisfy the required metrics could perform as mobile gateway candidates to connect other ordinary CUs with the cloud. These mobile gateway candidates are dynamically clustered according to different related metrics. Cluster head and time-to-live value are determined in each cluster. In this paper, the gateway advertisement and discovery issues are first addressed to propose a hybrid gateway discovery mechanism. After that, a QoS-based gateway selection algorithm is proposed for each CU to select the optimal gateway. Simulations are carried out to evaluate the performance of the overall scheme, which incorporates the proposed clustering and gateway selection algorithms. The results show that the proposed scheme can achieve about 11% higher average throughput, 10% lower end-to-end delay, and 8% lower packet drop fractions compared with the existing scheme.

VANET cloud computing architecture (VANET 클라우드 컴퓨팅 아키텍처)

  • Kim, TaeHyeong;Song, JooSeok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.04a
    • /
    • pp.142-145
    • /
    • 2014
  • 지금까지 교통사고 예방을 위한 도로 정보 등을 제공하기 위해 차량 간 통신 네트워크인 Vehicular Ad hoc NETwork (VANET)연구가 활발히 진행되어왔다. 그러나 각 자동차의 On board unit (OBU)의 계산 능력, 저장 공간 등을 효율적으로 사용하는 연구는 진행되어 오지 않았다. 2011년 Olariu et al. 가 cloud computing을 기존의 VANET에 적용하는 개념인 Autonomous Vehicular cloud[1]를 제시하면서 새로운 VANET 연구의 새로운 장을 열었다. 기존의 VANET연구는 지금까지의 각각의 자동차의 통신 성능을 높이는 것에 초점을 맞추었지만, 새로운 아이디어는 높아진 각 자동차의 능력을 효율적으로 이용하여, 유용하게 사용하는 것에 초점을 맞추었다. 이것은 Intelligent Transport System (ITS)의 구축에 한발 더 나아갈 수 있게 하였다. 그 이후 VANET cloud computing (VCC)에 관한 많은 연구들이 진행되었으나 보안적인 측면에서는 아직 연구가 미흡한 실정이다. 그래서 본 논문에서는 보안을 보완한 VCC 아키텍처를 제안한다.

DDoS attacks prevention in cloud computing through Transport Control protocol TCP using Round-Trip-Time RTT

  • Alibrahim, Thikra S;Hendaoui, Saloua
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.276-282
    • /
    • 2022
  • One of the most essential foundations upon which big institutions rely in delivering cloud computing and hosting services, as well as other kinds of multiple digital services, is the security of infrastructures for digital and information services throughout the world. Distributed denial-of-service (DDoS) assaults are one of the most common types of threats to networks and data centers. Denial of service attacks of all types operates on the premise of flooding the target with a massive volume of requests and data until it reaches a size bigger than the target's energy, at which point it collapses or goes out of service. where it takes advantage of a flaw in the Transport Control Protocol's transmitting and receiving (3-way Handshake) (TCP). The current study's major focus is on an architecture that stops DDoS attacks assaults by producing code for DDoS attacks using a cloud controller and calculating Round-Tripe Time (RTT).

A Survey of Computational Offloading in Cloud/Edge-based Architectures: Strategies, Optimization Models and Challenges

  • Alqarni, Manal M.;Cherif, Asma;Alkayal, Entisar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.3
    • /
    • pp.952-973
    • /
    • 2021
  • In recent years, mobile devices have become an essential part of daily life. More and more applications are being supported by mobile devices thanks to edge computing, which represents an emergent architecture that provides computing, storage, and networking capabilities for mobile devices. In edge computing, heavy tasks are offloaded to edge nodes to alleviate the computations on the mobile side. However, offloading computational tasks may incur extra energy consumption and delays due to network congestion and server queues. Therefore, it is necessary to optimize offloading decisions to minimize time, energy, and payment costs. In this article, different offloading models are examined to identify the offloading parameters that need to be optimized. The paper investigates and compares several optimization techniques used to optimize offloading decisions, specifically Swarm Intelligence (SI) models, since they are best suited to the distributed aspect of edge computing. Furthermore, based on the literature review, this study concludes that a Cuckoo Search Algorithm (CSA) in an edge-based architecture is a good solution for balancing energy consumption, time, and cost.

A Study on the Protection of User Data in the Cloud System (클라우드 시스템에서의 사용자 데이터 보호에 관한 연구)

  • Lee, Ae-Ri;Cho, Do-Eun;Lee, Jae-Young
    • Journal of Digital Convergence
    • /
    • v.10 no.11
    • /
    • pp.389-394
    • /
    • 2012
  • The cloud computing is a system that provides IT resources service by using internet technologies, which grabs lots of attention today. Though cloud storage services provide service users with convenience, there is a problem in which data confidentiality is not guaranteed because it is hard for data owners to control the access to the data. This article suggested the technique by applying Public-Key Cryptosystem only to a block after dividing users' data into blocks in order to protect users' data in cloud system. Thus confidentiality and integrity are given to users' data stored in cloud storage server.

A Hybrid Cloud-P2P Architecture for Scalable Massively Multiplayer Online Games (확장가능한 대규모 멀티플레이어 온라인 게임을 위한 클라우드와 P2P 하이브리드 구조)

  • Kim, Jin-Hwan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.3
    • /
    • pp.73-81
    • /
    • 2020
  • Today's massively multiplayer online games(MMOGs) can contain millions of synchronous players scattered across the world and participating with each other within a single shared game. The increase in the number of players in MMOGs has led to some issues with the demand of server which generates a significant increase in costs for the game industry and impacts to the quality of service offered to players. In dealing with a considerable scale of MMOGs, we propose a cloud computing and peer-to-peer(P2P) hybrid architecture in this paper. Given the two nearly independent functionalities of P2P and cloud architectures, we consider the possibility of fusing these two concepts and researching the application of the resultant amalgamation in MMOGs. With an efficient and effective provisioning of resources and mapping of load, the proposed hybrid architecture relieves a lot of computational power and network traffic, the load on the servers in the cloud while exploiting the capacity of the peers. The simulation results show that MMOGs based on the proposed hybrid architecture have better performance and lower traffic received compared with MMOGs based on traditional client-server system.

Cyber-Physical Computing: Leveraging Cloud computing for Ubiquitous Healthcare Applications (사이버 물리 컴퓨팅 : 유비쿼터스 건강 관리 응용에 대한 레버리징 클라우드컴퓨팅)

  • Abid, Hassan;Jin, Wang;Lee, Sung-Young;Lee, Young-Koo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06b
    • /
    • pp.41-43
    • /
    • 2011
  • Cyber-Physical Systems are tight integration of computation, networking and physical objects to sense, monitor, and control the physical world. This paper presents a novel architecture that combines two next generation technologies i.e. cyber-physical systems and Cloud computing to develop a ubiquitous healthcare based infrastructure. Through this infrastructure, patients and elderly people get remote assistance, monitoring of their health conditions and medication while living in proximity of home. Consequently, this leads to major cost savings. However, there are various challenges that need to be overcome before building such systems. These challenges include making system real-time responsive, reliability, stability and privacy. Therefore, in this paper, we propose an architecture that deals with these challenges.