• Title/Summary/Keyword: Cloud Building Information Modeling

Search Result 59, Processing Time 0.02 seconds

A Prototype BIM Server based viewer for Cloud Computing BIM Services (클라우드 컴퓨팅 기반 BIM 서비스를 위한 BIM 서버 기반의 뷰어 개발)

  • Yoon, Su-Won;Kim, Byung-Kon;Choi, Jong-Moon;Kwon, Soon-Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1719-1730
    • /
    • 2013
  • Recently BIM technology has been expanded for using in construction project. However its spread has been delayed than the initial expectations, due to the high-cost of BIM infrastructure development, the lack of regulations, the lack of process and so forth. Therefore, this research proposes the cloud computing based BIM service for saving the cost of BIM infrastructure development and providing various BIM Services to meet the domestic process. In order to achieve this, we perform a survey on the cloud computing based BIM service and develope the prototype system as the core technology of proposed service. The developed the prototype system consists of the IFC based BIM server for IaaS (Infrastructure as a Service) and the viewer for SaaS (Software as a Service). This research also conducts the performance test for their applicability and verifies that the results of this research can be used as core components in the cloud computing based BIM service.

Performance Evaluation of Denoising Algorithms for the 3D Construction Digital Map (건설현장 적용을 위한 디지털맵 노이즈 제거 알고리즘 성능평가)

  • Park, Su-Yeul;Kim, Seok
    • Journal of KIBIM
    • /
    • v.10 no.4
    • /
    • pp.32-39
    • /
    • 2020
  • In recent years, the construction industry is getting bigger and more complex, so it is becoming difficult to acquire point cloud data for construction equipments and workers. Point cloud data is measured using a drone and MMS(Mobile Mapping System), and the collected point cloud data is used to create a 3D digital map. In particular, the construction site is located at outdoors and there are many irregular terrains, making it difficult to collect point cloud data. For these reasons, adopting a noise reduction algorithm suitable for the characteristics of the construction industry can affect the improvement of the analysis accuracy of digital maps. This is related to various environments and variables of the construction site. Therefore, this study reviewed and analyzed the existing research and techniques on the noise reduction algorithm. And based on the results of literature review, performance evaluation of major noise reduction algorithms was conducted for digital maps of construction sites. As a result of the performance evaluation in this study, the voxel grid algorithm showed relatively less execution time than the statistical outlier removal algorithm. In addition, analysis results in slope, space, and earth walls of the construction site digital map showed that the voxel grid algorithm was relatively superior to the statistical outlier removal algorithm and that the noise removal performance of voxel grid algorithm was superior and the object preservation ability was also superior. In the future, based on the results reviewed through the performance evaluation of the noise reduction algorithm of this study, we will develop a noise reduction algorithm for 3D point cloud data that reflects the characteristics of the construction site.

Geometry-to-BIM Mapping Rule Definition for Building Plane BIM object (건축물 평면 형상에 대한 형상-to-BIM 맵핑 규칙 정의)

  • Kang, Tae-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.236-242
    • /
    • 2019
  • Recently, scanning projects have been carried out in various construction and construction fields for maintenance purposes. The point cloud generated by the scan results is composed of a number of points representing the object to be scanned. The process of extracting the necessary information, including dimensions, from such scan data is called paradox. The reverse engineering process of modeling a point cloud as BIM involves considerable manual work. Owing to the time-consuming reverse engineering nature of the work, the costs increase exponentially when rework requests are made, such as design changes. Reverse engineering automation technology can help improve these problems. On the other hand, the reverse design product is variable depending on the use, and the kind and detail level of the product may be different. This paper proposes the G2BM (Geometry-to-BIM mapping) rule definition method that automatically maps a BIM object from a primitive geometry to a BIM object. G2BM proposes a process definition and a customization method for reverse engineering BIM objects that consider the use case variability.

The Maintenance and Management Method of Deteriorated Facilities Using 4D map Based on UAV and 3D Point Cloud (3D Point Cloud 기반 4D map 생성을 통한 노후화 시설물 유지 관리 방안)

  • Kim, Yong-Gu;Kwon, Jong-Wook
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.3
    • /
    • pp.239-246
    • /
    • 2019
  • According to the survey on the status of aged buildings in Korea, A number of concrete buildings deterioration such as houses and apartment buildings has been increased rapidly. To solve this problem, the research related to the facility management, that is one of the importance factor, for monitoring buildings has been increased. The research is divided into Survey-based and Technique-based. However, the problem is that Survey-based research is required a lot of time, money and manpower for management. Also, safety cannot be guaranteed in the case of high-rise buildings. Technique-based research has limitations to applying to the current facility maintenance system, as detailed information of deteriorated facilities is difficult to grasp and errors in accuracy are feared. Therefore, this paper contribute to improve the environment of facility management by 4D maps using UAV, camera and Pix4D mapper program to make 3D model. In addition, it is expected to suggest that residents will be offered easy verification to their buildings deterioration.

A Study on the Improvement of Repair and Reinforcement Quantity Take-off in Fire-damaged Area Using 3D Laser Scanning (3D Laser Scanning을 활용한 화재 손상 부위의 보수·보강 물량 산출 방식 개선에 관한 연구)

  • Jeong, Hoi-Jae;Ham, Nam-Hyuk;Lee, Byoung-Do;Park, Kwang-Min;Kim, Jae-Jun
    • Journal of KIBIM
    • /
    • v.9 no.1
    • /
    • pp.11-21
    • /
    • 2019
  • Recently, there is an increase in fire incidents in building structures. Due to this, the importance of fire-damaged buildings' safety diagnosis and evaluation after fire is growing. However, the existing fire-damaged safety diagnosis and evaluation methods are personnel-oriented, so the diagnostic results are intervened by investigators' subjectivity and unquantified. Thus, improper repair and reinforcement can result in secondary damage accidents and economic losses. In order to overcome these limitations, this study proposes using 3D laser scanning technology. The case analysis of fire-damaged building structures was conducted to verify the effectiveness of accuracy and manpowering by comparing the existing method and the proposed method. The proposed method using 3D laser scanning technology to obtain point cloud data of fire-damaged field. The point cloud data and BIM model is combined to inspect the fire-damaged area and depth. From inspection, quantified repair and reinforcement quantity take-off can be acquired. Also, the proposed method saves half of the manpowering within same time period compared to the existing method. Therefore, it seems that using 3D laser scanning technology in fire-damaged safety diagnosis and evaluation will improve in accuracy and saving time and manpowering.

Hue-assisted automatic registration of color point clouds

  • Men, Hao;Pochiraju, Kishore
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.4
    • /
    • pp.223-232
    • /
    • 2014
  • This paper describes a variant of the extended Gaussian image based registration algorithm for point clouds with surface color information. The method correlates the distributions of surface normals for rotational alignment and grid occupancy for translational alignment with hue filters applied during the construction of surface normal histograms and occupancy grids. In this method, the size of the point cloud is reduced with a hue-based down sampling that is independent of the point sample density or local geometry. Experimental results show that use of the hue filters increases the registration speed and improves the registration accuracy. Coarse rigid transformations determined in this step enable fine alignment with dense, unfiltered point clouds or using Iterative Common Point (ICP) alignment techniques.

Analysis of 3D Building Construction Applications in Augmented Reality

  • Khan, Humera Mehfooz;Waseemullah, Waseemullah;Bhutto, Muhammad Aslam;Khan, Shariq Mahmood;Baig, Mirza Adnan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.340-346
    • /
    • 2022
  • Construction industry is considered as one of the oldest industries in the world since human came into being and the need of their own space is realized. All this led to make the world a space of many beautiful constructive ventures. As per the requirements of today's world, every industry is recognizing the need for use and adoption of modern as well as innovative technologies due to their benefits and timely production. Now construction industry has also started adopting the use of modern and innovative technologies during their projects but still the rate of adoption is so slow. From design to completion, construction projects take a lot to manage for which technology based solutions have continuously been proposed. These include Computer Aided Design (CAD), building information modeling (BIM) and cloud computing have been proved to be much successful until now. The construction projects are high budgeted, and direly require timely and successful completion with quality, resource and other constraints. So, the researchers observe the need of more clear and technology based communication between the construction projects and its constructors and other stakeholders is required before and during the construction to take timely precautions for expected issues. This study has analyzed the use of Augmented Reality (AR) technology adopting GammaAR, and ARki applications in construction industry. It has been found that both applications are light-weighted, upgradable, provide offline availability and collaborative environment as well as fulfil most of the requirements of the construction industry except the cost. These applications also support different screen size for better visualization and deep understanding. Both applications are analyzed, based on construction's application requirements, usability of AR and ratings of applications user collected from application's platform. The purpose of this research is to provide a detail insight of construction applications which are using AR to facilitate both the future developers and consumers.

A Study on the Efficient 3D Scanning Method for Digital Twin Configuration in Construction Site (건설현장의 디지털 트윈 구성을 위한 효율적인 3D 스캐닝 방법에 관한 연구)

  • Kim, Seong-Hun;Kim, Tae-Han;Eom, Ire;Won, Jong-Chul
    • Journal of KIBIM
    • /
    • v.12 no.3
    • /
    • pp.39-51
    • /
    • 2022
  • 3D scan technology can utilize real spatial information as it is in virtual space, so it can be usefully used in various fields such as reverse engineering of buildings and process management. Recently, with the development of ICT technology, more precise scan data can be obtained, and scan processing time has also been greatly reduced. In addition, the combination of software and scanning equipment used in 3D scanning technology is very diverse, and results are very different depending on which technology is used. Accordingly, there is a problem that it is difficult for a user who has no experience in 3D scanning technology to determine which technology and equipment should be used to obtain good results. In this study, 3D scan technologies mainly used at home and abroad are investigated, classified, and tested at actual construction sites to suggest considerations and suitable 3D scan methods when using 3D scans in construction sites. The test results were analyzed to evaluate the time it takes to scan, the final quality, and the user's convenience according to each technology method.

Development of BIM Collaboration Framework Based on ISO 19650 (국제표준을 반영한 BIM 협업 프레임워크 개발)

  • Choi, Sung-Woo;Hyun, Keun-Ju;Kim, Hyeon-seung
    • Journal of KIBIM
    • /
    • v.13 no.4
    • /
    • pp.54-63
    • /
    • 2023
  • In recent years, the mandatory use of BIM has been actively promoted due to the digital transformation of the construction industry. However, the CDE (Common Data Environment) system, which is an essential element for operating BIM, has not been established in accordance with the domestic situation. To solve this problem, this study analyzed the results of previous studies, including the ISO 19650 standard and domestic CDE system requirements, and developed BIM-based collaboration functions that are suitable for the domestic construction industry through functional analysis of domestic and foreign commercial CDE solutions. And we developed a BIM collaboration framework to provide BIM-based collaboration functions as a service by using cloud technologies such as IaaS, PaaS, and SaaS to provide infrastructure resources flexibly and flexibly. The BIM collaboration framework developed in this study meets most of the CDE requirements of ISO1965, so it can secure competitiveness when bidding for overseas BIM projects. Also, because the BIM collaboration functions can be selectively applied to build a BIM-based collaboration platform, it is expected that the utilization of the BIM collaboration framework will be high, as it can minimize not only the time to build the platform but also the operating costs, and the usability is higher than that of existing commercial BIM CDE solutions.

A Study on Point Cloud Generation Method from UAV Image Using Incremental Bundle Adjustment and Stereo Image Matching Technique (Incremental Bundle Adjustment와 스테레오 영상 정합 기법을 적용한 무인항공기 영상에서의 포인트 클라우드 생성방안 연구)

  • Rhee, Sooahm;Hwang, Yunhyuk;Kim, Soohyeon
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.941-951
    • /
    • 2018
  • Utilization and demand of UAV (unmanned aerial vehicle) for the generation of 3D city model are increasing. In this study, we performed an experiment to adjustment position/orientation of UAV with incomplete attitude information and to extract point cloud data. In order to correct the attitude of the UAV, the rotation angle was calculated by using the continuous position information of UAV movements. Based on this, the corrected position/orientation information was obtained by applying IBA (Incremental Bundle Adjustment) based on photogrammetry. Each pair was transformed into an epipolar image, and the MDR (Multi-Dimensional Relaxation) technique was applied to obtain high precision DSM. Each extracted pair is aggregated and output in the form of a single point cloud or DSM. Using the DJI inspire1 and Phantom4 images, we can confirm that the point cloud can be extracted which expresses the railing of the building clearly. In the future, research will be conducted on improving the matching performance and establishing sensor models of oblique images. After that, we will continue the image processing technology for the generation of the 3D city model through the study of the extraction of 3D cloud It should be developed.