• Title/Summary/Keyword: Cloud/Grid Computing

Search Result 48, Processing Time 0.03 seconds

A Study on the Application of the LMS and LCMS Based E-Learning in the Cloud Computing Environment (클라우드 컴퓨팅 환경에서LMS와 LCMS기반의 이러닝 적용 방안)

  • Jeong, Hwa-Young;Kim, Eun-Won;Hong, Bong-Hwa
    • 전자공학회논문지 IE
    • /
    • v.47 no.1
    • /
    • pp.56-60
    • /
    • 2010
  • The widespread development of IT, growth of Web 2.0 application, the proliferation of personal hand held devices with access to the internet, and the availability of wireless networks, each have played an important role in creating the cloud computing model. Cloud computing is a business model and new trend of web application technology. The term is often used in the same context as grid computing or utility computing. In the cloud computing environment, we are able to use the same all of hardware resources in the server and share information easily. In this paper, we aimed a study to apply e-learning part to cloud computing environment. For this purpose, we proposed an application of LMS and LCMS based e-learning in the cloud computing environment. So LMS including LCMS connected to data center of cloud computing.

Service Architecture Models For Fog Computing: A Remedy for Latency Issues in Data Access from Clouds

  • Khalid, Adnan;Shahbaz, Muhammad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2310-2345
    • /
    • 2017
  • With the emergence of the Internet of Things (IoT) the world is projecting towards a scenario where every object in the world (including humans) acts as a sender and receiver of data and if we were to see that concept mature we would soon be talking of billions more users of the cloud networks. The cloud technology is a very apt alternative to permanent storage when it comes to bulk storage and reporting. It has however shown weaknesses concerning real-time data accessibility and processing. The bandwidth availability of the cloud networks is limited and combined with the highly centralized storage structure and geographical vastness of the network in terms of distance from the end user the cloud just does not seem like a friendly environment for real-time IOT data. This paper aims at highlighting the importance of Flavio Bonomi's idea of Fog Computing which has been glamorized and marketed by Cisco but has not yet been given a proper service architecture that would explain how it would be used in terms of various service models i-e IaaS, PaaS and SaaS, of the Cloud. The main contribution of the paper would be models for IaaS, PaaS and SaaS for Fog environments. The paper would conclude by highlighting the importance of the presented models and giving a consolidated overview of how they would work. It would also calculate the respective latencies for fog and cloud to prove that our models would work. We have used CloudSim and iFogSim to show the effectiveness of the paradigm shift from traditional cloud architecture to our Fog architecture.

Agent Based Information Security Framework for Hybrid Cloud Computing

  • Tariq, Muhammad Imran
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.406-434
    • /
    • 2019
  • In general, an information security approach estimates the risk, where the risk is to occur due to an unusual event, and the associated consequences for cloud organization. Information Security and Risk Management (ISRA) practices vary among cloud organizations and disciplines. There are several approaches to compare existing risk management methods for cloud organizations but their scope is limited considering stereo type criteria, rather than developing an agent based task that considers all aspects of the associated risk. It is the lack of considering all existing renowned risk management frameworks, their proper comparison, and agent techniques that motivates this research. This paper proposes Agent Based Information Security Framework for Hybrid Cloud Computing as an all-inclusive method including cloud related methods to review and compare existing different renowned methods for cloud computing risk issues and by adding new tasks from surveyed methods. The concepts of software agent and intelligent agent have been introduced that fetch/collect accurate information used in framework and to develop a decision system that facilitates the organization to take decision against threat agent on the basis of information provided by the security agents. The scope of this research primarily considers risk assessment methods that focus on assets, potential threats, vulnerabilities and their associated measures to calculate consequences. After in-depth comparison of renowned ISRA methods with ABISF, we have found that ISO/IEC 27005:2011 is the most appropriate approach among existing ISRA methods. The proposed framework was implemented using fuzzy inference system based upon fuzzy set theory, and MATLAB(R) fuzzy logic rules were used to test the framework. The fuzzy results confirm that proposed framework could be used for information security in cloud computing environment.

Hilbert-curve based Multi-dimensional Indexing Key Generation Scheme and Query Processing Algorithm for Encrypted Databases (암호화 데이터를 위한 힐버트 커브 기반 다차원 색인 키 생성 및 질의처리 알고리즘)

  • Kim, Taehoon;Jang, Miyoung;Chang, Jae-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.10
    • /
    • pp.1182-1188
    • /
    • 2014
  • Recently, the research on database outsourcing has been actively done with the popularity of cloud computing. However, because users' data may contain sensitive personal information, such as health, financial and location information, the data encryption methods have attracted much interest. Existing data encryption schemes process a query without decrypting the encrypted databases in order to support user privacy protection. On the other hand, to efficiently handle the large amount of data in cloud computing, it is necessary to study the distributed index structure. However, existing index structure and query processing algorithms have a limitation that they only consider single-column query processing. In this paper, we propose a grid-based multi column indexing scheme and an encrypted query processing algorithm. In order to support multi-column query processing, the multi-dimensional index keys are generated by using a space decomposition method, i.e. grid index. To support encrypted query processing over encrypted data, we adopt the Hilbert curve when generating a index key. Finally, we prove that the proposed scheme is more efficient than existing scheme for processing the exact and range query.

Performance Optimization of Numerical Ocean Modeling on Cloud Systems (클라우드 시스템에서 해양수치모델 성능 최적화)

  • JUNG, KWANGWOOG;CHO, YANG-KI;TAK, YONG-JIN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.27 no.3
    • /
    • pp.127-143
    • /
    • 2022
  • Recently, many attempts to run numerical ocean models in cloud computing environments have been tried actively. A cloud computing environment can be an effective means to implement numerical ocean models requiring a large-scale resource or quickly preparing modeling environment for global or large-scale grids. Many commercial and private cloud computing systems provide technologies such as virtualization, high-performance CPUs and instances, ether-net based high-performance-networking, and remote direct memory access for High Performance Computing (HPC). These new features facilitate ocean modeling experimentation on commercial cloud computing systems. Many scientists and engineers expect cloud computing to become mainstream in the near future. Analysis of the performance and features of commercial cloud services for numerical modeling is essential in order to select appropriate systems as this can help to minimize execution time and the amount of resources utilized. The effect of cache memory is large in the processing structure of the ocean numerical model, which processes input/output of data in a multidimensional array structure, and the speed of the network is important due to the communication characteristics through which a large amount of data moves. In this study, the performance of the Regional Ocean Modeling System (ROMS), the High Performance Linpack (HPL) benchmarking software package, and STREAM, the memory benchmark were evaluated and compared on commercial cloud systems to provide information for the transition of other ocean models into cloud computing. Through analysis of actual performance data and configuration settings obtained from virtualization-based commercial clouds, we evaluated the efficiency of the computer resources for the various model grid sizes in the virtualization-based cloud systems. We found that cache hierarchy and capacity are crucial in the performance of ROMS using huge memory. The memory latency time is also important in the performance. Increasing the number of cores to reduce the running time for numerical modeling is more effective with large grid sizes than with small grid sizes. Our analysis results will be helpful as a reference for constructing the best computing system in the cloud to minimize time and cost for numerical ocean modeling.

Design and Evaluation of a Fault-tolerant Publish/Subscribe System for IoT Applications (IoT 응용을 위한 결함 포용 발행/구독 시스템의 설계 및 평가)

  • Bae, Ihn-Han
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.8
    • /
    • pp.1101-1113
    • /
    • 2021
  • The rapid growth of sense-and-respond applications and the emerging cloud computing model present a new challenge: providing publish/subscribe middleware as a scalable and elastic cloud service. The publish/subscribe interaction model is a promising solution for scalable data dissemination over wide-area networks. In addition, there have been some work on the publish/subscribe messaging paradigm that guarantees reliability and availability in the face of node and link failures. These publish/subscribe systems are commonly used in information-centric networks and edge-fog-cloud infrastructures for IoT. The IoT has an edge-fog cloud infrastructure to efficiently process massive amounts of sensing data collected from the surrounding environment. In this paper. we propose a quorum-based hierarchical fault-tolerant publish/subscribe systems (QHFPS) to enable reliable delivery of messages in the presence of link and node failures. The QHFPS efficiently distributes IoT messages to the publish/subscribe brokers in fog overlay layers on the basis of proposing extended stepped grid (xS-grid) quorum for providing tolerance when faced with node failures and network partitions. We evaluate the performance of QHFPS in three aspects: number of transmitted Pub/Sub messages, average subscription delay, and subscritpion delivery rate with an analytical model.

Cloud P2P OLAP: Query Processing Method and Index structure for Peer-to-Peer OLAP on Cloud Computing (Cloud P2P OLAP: 클라우드 컴퓨팅 환경에서의 Peer-to-Peer OLAP 질의처리기법 및 인덱스 구조)

  • Joo, Kil-Hong;Kim, Hun-Dong;Lee, Won-Suk
    • Journal of Internet Computing and Services
    • /
    • v.12 no.4
    • /
    • pp.157-172
    • /
    • 2011
  • The latest active studies on distributed OLAP to adopt a distributed environment are mainly focused on DHT P2P OLAP and Grid OLAP. However, these approaches have its weak points, the P2P OLAP has limitations to multidimensional range queries in the cloud computing environment due to the nature of structured P2P. On the other hand, the Grid OLAP has no regard for adjacency and time series. It focused on its own sub set lookup algorithm. To overcome the above limits, this paper proposes an efficient central managed P2P approach for a cloud computing environment. When a multi-level hybrid P2P method is combined with an index load distribution scheme, the performance of a multi-dimensional range query is enhanced. The proposed scheme makes the OLAP query results of a user to be able to reused by other users' volatile cube search. For this purpose, this paper examines the combination of an aggregation cube hierarchy tree, a quad-tree, and an interval-tree as an efficient index structure. As a result, the proposed cloud P2P OLAP scheme can manage the adjacency and time series factor of an OLAP query. The performance of the proposed scheme is analyzed by a series of experiments to identify its various characteristics.

Profit-Maximizing Virtual Machine Provisioning Based on Workload Prediction in Computing Cloud

  • Li, Qing;Yang, Qinghai;He, Qingsu;Kwak, Kyung Sup
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.12
    • /
    • pp.4950-4966
    • /
    • 2015
  • Cloud providers now face the problem of estimating the amount of computing resources required to satisfy a future workload. In this paper, a virtual machine provisioning (VMP) mechanism is designed to adapt workload fluctuation. The arrival rate of forthcoming jobs is predicted for acquiring the proper service rate by adopting an exponential smoothing (ES) method. The proper service rate is estimated to guarantee the service level agreement (SLA) constraints by using a diffusion approximation statistical model. The VMP problem is formulated as a facility location problem. Furthermore, it is characterized as the maximization of submodular function subject to the matroid constraints. A greedy-based VMP algorithm is designed to obtain the optimal virtual machine provision pattern. Simulation results illustrate that the proposed mechanism could increase the average profit efficiently without incurring significant quality of service (QoS) violations.

LiDAR-based Mobile Robot Exploration Considering Navigability in Indoor Environments (실내 환경에서의 주행가능성을 고려한 라이다 기반 이동 로봇 탐사 기법)

  • Hyejeong Ryu;Jinwoo Choi;Taehyeon Kim
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.487-495
    • /
    • 2023
  • This paper presents a method for autonomous exploration of indoor environments using a 2-dimensional Light Detection And Ranging (LiDAR) scanner. The proposed frontier-based exploration method considers navigability from the current robot position to extracted frontier targets. An approach to constructing the point cloud grid map that accurately reflects the occupancy probability of glass obstacles is proposed, enabling identification of safe frontier grids on the safety grid map calculated from the point cloud grid map. Navigability, indicating whether the robot can successfully navigate to each frontier target, is calculated by applying the skeletonization-informed rapidly exploring random tree algorithm to the safety grid map. While conventional exploration approaches have focused on frontier detection and target position/direction decision, the proposed method discusses a safe navigation approach for the overall exploration process until the completion of mapping. Real-world experiments have been conducted to verify that the proposed method leads the robot to avoid glass obstacles and safely navigate the entire environment, constructing the point cloud map and calculating the navigability with low computing time deviation.

An Effective Multivariate Control Framework for Monitoring Cloud Systems Performance

  • Hababeh, Ismail;Thabain, Anton;Alouneh, Sahel
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.86-109
    • /
    • 2019
  • Cloud computing systems' performance is still a central focus of research for determining optimal resource utilization. Running several existing benchmarks simultaneously serves to acquire performance information from specific cloud system resources. However, the complexity of monitoring the existing performance of computing systems is a challenge requiring an efficient and interactive user directing performance-monitoring system. In this paper, we propose an effective multivariate control framework for monitoring cloud systems performance. The proposed framework utilizes the hardware cloud systems performance metrics, collects and displays the performance measurements in terms of meaningful graphics, stores the graphical information in a database, and provides the data on-demand without requiring a third party software. We present performance metrics in terms of CPU usage, RAM availability, number of cloud active machines, and number of running processes on the selected machines that can be monitored at a high control level by either using a cloud service customer or a cloud service provider. The experimental results show that the proposed framework is reliable, scalable, precise, and thus outperforming its counterparts in the field of monitoring cloud performance.