• Title/Summary/Keyword: Cloud/Grid Computing

Search Result 48, Processing Time 0.029 seconds

An Exhaustive Review on Security Issues in Cloud Computing

  • Fatima, Shahin;Ahmad, Shish
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.3219-3237
    • /
    • 2019
  • The Cloud Computing is growing rapidly in the current IT industry. Cloud computing has become a buzzword in relation to Grid & Utility computing. It provides on demand services to customers and customers will pay for what they get. Various "Cloud Service Provider" such as Microsoft Azure, Google Web Services etc. enables the users to access the cloud in cost effective manner. However, security, privacy and integrity of data is a major concern. In this paper various security challenges have been identified and the survey briefs the comprehensive overview of various security issues in cloud computing. The classification of security issues in cloud computing have been studied. In this paper we have discussed security challenges in cloud computing and also list recommended methods available for addressing them in the literature.

GCaaS: A Light-weight Grid Computing Web Application

  • Liu, Xiao;Woo, Gyun
    • Annual Conference of KIPS
    • /
    • 2015.04a
    • /
    • pp.121-124
    • /
    • 2015
  • Recent global and cloud computing render the Internet and Web application to be a paramount field since it is uncomplicated to access and less time and space limitation. On the other hand, a growing number of computations using grid computing techniques indicates the requirements and quantities of large-scale computations are becoming foremost progressively. Therefore, that will be much practicable if there is a Web-based service that could provide Grid computing functions. In this paper, Several similar Web-based cloud and parallel computing systems will be discussed and a model of Web application termed GCaaS which supports grid computing services will be introduced.

Evaluation of Facilitating Factors for Cloud Service by Delphi Method (델파이 기법을 이용한 클라우드 서비스의 개념 정의와 활성화 요인 분석)

  • Suh, Jung-Han;Chang, Suk-Gwon
    • Journal of Information Technology Services
    • /
    • v.11 no.2
    • /
    • pp.107-118
    • /
    • 2012
  • Recently, as the clouding computing begins to receive a great attention from people all over the world, it became the most popular buzz word in recent IT magazines or journal and heard it in many different services or different fields. However, a notion of the cloud service is defined vaguely compared to increasing attentions from others. Generally the cloud service could be understood as a specific service model base on the clouding computing, but the cloud, the cloud computing, the cloud computing service and cloud service, these four all terms are often used without any distinction of its notions and characteristics so that it's difficult to define the exact nature of the cloud service. To explore and analyze the cloud service systematically, an accurate conception and scope have to be preceded. Therefore this study is to firstly clarify its definition by Delpi method using expert group and then tries to provide the foundation needed to enable relative research such as establishing business model or value chain and policies for its activation to set off. For the Delpi, 16 experts participated in several surveys from different fields such industry, academy and research sector. As a result of the research, Characteristics of the Cloud Service are followings : Pay per use, Scalability, Internet centric Virtualization. And the scope as defined including Grid Computing, Utility Computing, Server Based Computing, Network Computing.

Research Trend Analysis Using Bibliographic Information and Citations of Cloud Computing Articles: Application of Social Network Analysis (클라우드 컴퓨팅 관련 논문의 서지정보 및 인용정보를 활용한 연구 동향 분석: 사회 네트워크 분석의 활용)

  • Kim, Dongsung;Kim, Jongwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.195-211
    • /
    • 2014
  • Cloud computing services provide IT resources as services on demand. This is considered a key concept, which will lead a shift from an ownership-based paradigm to a new pay-for-use paradigm, which can reduce the fixed cost for IT resources, and improve flexibility and scalability. As IT services, cloud services have evolved from early similar computing concepts such as network computing, utility computing, server-based computing, and grid computing. So research into cloud computing is highly related to and combined with various relevant computing research areas. To seek promising research issues and topics in cloud computing, it is necessary to understand the research trends in cloud computing more comprehensively. In this study, we collect bibliographic information and citation information for cloud computing related research papers published in major international journals from 1994 to 2012, and analyzes macroscopic trends and network changes to citation relationships among papers and the co-occurrence relationships of key words by utilizing social network analysis measures. Through the analysis, we can identify the relationships and connections among research topics in cloud computing related areas, and highlight new potential research topics. In addition, we visualize dynamic changes of research topics relating to cloud computing using a proposed cloud computing "research trend map." A research trend map visualizes positions of research topics in two-dimensional space. Frequencies of key words (X-axis) and the rates of increase in the degree centrality of key words (Y-axis) are used as the two dimensions of the research trend map. Based on the values of the two dimensions, the two dimensional space of a research map is divided into four areas: maturation, growth, promising, and decline. An area with high keyword frequency, but low rates of increase of degree centrality is defined as a mature technology area; the area where both keyword frequency and the increase rate of degree centrality are high is defined as a growth technology area; the area where the keyword frequency is low, but the rate of increase in the degree centrality is high is defined as a promising technology area; and the area where both keyword frequency and the rate of degree centrality are low is defined as a declining technology area. Based on this method, cloud computing research trend maps make it possible to easily grasp the main research trends in cloud computing, and to explain the evolution of research topics. According to the results of an analysis of citation relationships, research papers on security, distributed processing, and optical networking for cloud computing are on the top based on the page-rank measure. From the analysis of key words in research papers, cloud computing and grid computing showed high centrality in 2009, and key words dealing with main elemental technologies such as data outsourcing, error detection methods, and infrastructure construction showed high centrality in 2010~2011. In 2012, security, virtualization, and resource management showed high centrality. Moreover, it was found that the interest in the technical issues of cloud computing increases gradually. From annual cloud computing research trend maps, it was verified that security is located in the promising area, virtualization has moved from the promising area to the growth area, and grid computing and distributed system has moved to the declining area. The study results indicate that distributed systems and grid computing received a lot of attention as similar computing paradigms in the early stage of cloud computing research. The early stage of cloud computing was a period focused on understanding and investigating cloud computing as an emergent technology, linking to relevant established computing concepts. After the early stage, security and virtualization technologies became main issues in cloud computing, which is reflected in the movement of security and virtualization technologies from the promising area to the growth area in the cloud computing research trend maps. Moreover, this study revealed that current research in cloud computing has rapidly transferred from a focus on technical issues to for a focus on application issues, such as SLAs (Service Level Agreements).

Software Architecture of the Grid for implementing the Cloud Computing of the High Availability (고가용성 클라우드 컴퓨팅 구축을 위한 그리드 소프트웨어 아키텍처)

  • Lee, Byoung-Yup;Park, Jun-Ho;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.2
    • /
    • pp.19-29
    • /
    • 2012
  • Currently, cloud computing technology is being supplied in various service forms and it is becoming a ground breaking service which provides usage of storage service, data and software while user is not involved in technical background such as physical location of service or system environment. cloud computing technology has advantages that it can use easily as many IT resources as it wants freely regardless of hardware issues required by a variety of systems and service level required by infrastructure. Also, since it has a strength that it can choose usage of resource about business model due to various internet-based technologies, provisioning technology and virtualization technology are being paid attention as main technologies. These technologies are ones of important technology elements which help web-based users approach freely and install according to user environment. Therefore, this thesis introduces software-related technologies and architectures in an aspect of grid for building up high availability cloud computing environment by analysis about cloud computing technology trend.

Adaptive Deadline-aware Scheme (ADAS) for Data Migration between Cloud and Fog Layers

  • Khalid, Adnan;Shahbaz, Muhammad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1002-1015
    • /
    • 2018
  • The advent of Internet of Things (IoT) and the evident inadequacy of Cloud networks concerning management of numerous end nodes have brought about a shift of paradigm giving birth to Fog computing. Fog computing is an extension of Cloud computing that extends Cloud resources at the edge of the network, closer to the user. Cloud computing has become one of the essential needs of people over the Internet but with the emerging concept of IoT, traditional Clouds seem inadequate. IoT entails extremely low latency and for that, the Cloud servers that are distant and unknown to the user appear to be unsuitable. With the help of Fog computing, the Fog devices installed would be closer to the user that will provide an immediate storage for the frequently needed data. This paper discusses data migration between different storage types especially between Cloud devices and then presents a mechanism to migrate data between Cloud and Fog Layer. We call this mechanism Adaptive Deadline-Aware Scheme (ADAS) for Data migration between Cloud and Fog. We will demonstrate that we can access and process latency sensitive "hot" data through the proposed ADAS more efficiently than with a traditional Cloud setup.

Efficient Server Virtualization using Grid Service Infrastructure

  • Baek, Sung-Jin;Park, Sun-Mi;Yang, Su-Hyun;Song, Eun-Ha;Jeong, Young-Sik
    • Journal of Information Processing Systems
    • /
    • v.6 no.4
    • /
    • pp.553-562
    • /
    • 2010
  • The core services in cloud computing environment are SaaS (Software as a Service), Paas (Platform as a Service) and IaaS (Infrastructure as a Service). Among these three core services server virtualization belongs to IaaS and is a service technology to reduce the server maintenance expenses. Normally, the primary purpose of sever virtualization is building and maintaining a new well functioning server rather than using several existing servers, and in improving the various system performances. Often times this presents an issue in that there might be a need to increase expenses in order to build a new server. This study intends to use grid service architecture for a form of server virtualization which utilizes the existing servers rather than introducing a new server. More specifically, the proposed system is to enhance system performance and to reduce the corresponding expenses, by adopting a scheduling algorithm among the distributed servers and the constituents for grid computing thereby supporting the server virtualization service. Furthermore, the proposed server virtualization system will minimize power management by adopting the sleep severs, the subsidized servers and the grid infrastructure. The power maintenance expenses for the sleep servers will be lowered by utilizing the ACPI (Advanced Configuration & Power Interface) standards with the purpose of overcoming the limits of server performance.

On the Performance of Oracle Grid Engine Queuing System for Computing Intensive Applications

  • Kolici, Vladi;Herrero, Albert;Xhafa, Fatos
    • Journal of Information Processing Systems
    • /
    • v.10 no.4
    • /
    • pp.491-502
    • /
    • 2014
  • In this paper we present some research results on computing intensive applications using modern high performance architectures and from the perspective of high computational needs. Computing intensive applications are an important family of applications in distributed computing domain. They have been object of study using different distributed computing paradigms and infrastructures. Such applications distinguish for their demanding needs for CPU computing, independently of the amount of data associated with the problem instance. Among computing intensive applications, there are applications based on simulations, aiming to maximize system resources for processing large computations for simulation. In this research work, we consider an application that simulates scheduling and resource allocation in a Grid computing system using Genetic Algorithms. In such application, a rather large number of simulations is needed to extract meaningful statistical results about the behavior of the simulation results. We study the performance of Oracle Grid Engine for such application running in a Cluster of high computing capacities. Several scenarios were generated to measure the response time and queuing time under different workloads and number of nodes in the cluster.

Towards efficient sharing of encrypted data in cloud-based mobile social network

  • Sun, Xin;Yao, Yiyang;Xia, Yingjie;Liu, Xuejiao;Chen, Jian;Wang, Zhiqiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1892-1903
    • /
    • 2016
  • Mobile social network is becoming more and more popular with respect to the development and popularity of mobile devices and interpersonal sociality. As the amount of social data increases in a great deal and cloud computing techniques become developed, the architecture of mobile social network is evolved into cloud-based that mobile clients send data to the cloud and make data accessible from clients. The data in the cloud should be stored in a secure fashion to protect user privacy and restrict data sharing defined by users. Ciphertext-policy attribute-based encryption (CP-ABE) is currently considered to be a promising security solution for cloud-based mobile social network to encrypt the sensitive data. However, its ciphertext size and decryption time grow linearly with the attribute numbers in the access structure. In order to reduce the computing overhead held by the mobile devices, in this paper we propose a new Outsourcing decryption and Match-then-decrypt CP-ABE algorithm (OM-CP-ABE) which firstly outsources the computation-intensive bilinear pairing operations to a proxy, and secondly performs the decryption test on the attributes set matching access policy in ciphertexts. The experimental performance assessments show the security strength and efficiency of the proposed solution in terms of computation, communication, and storage. Also, our construction is proven to be replayable choosen-ciphertext attacks (RCCA) secure based on the decisional bilinear Diffie-Hellman (DBDH) assumption in the standard model.

Performance Improvement of Data Replication in Cloud Computing (Cloud Computing에서의 데이터 복제 성능 개선)

  • Lee, Joon-Kyu;Lee, Bong-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.53-56
    • /
    • 2008
  • Recently, the distributed system is being evolved into a new paradigm, named cloud computing, which provides users with efficient computing resources and services from data centers. Cloud computing would reduce the potential danger of Grid computing which utilizes resource sharing by constructing centralized data center. In this paper, a new data replication scheme is proposed for Hadoop distributed file system by changing 1:1 data transmission to 1:N. The proposed scheme considerably reduced the data transmission delay comparing to the current mechanism.

  • PDF