• Title/Summary/Keyword: Clostridium tyrobutyricum

Search Result 5, Processing Time 0.024 seconds

Effect of Initial Glucose Concentrations on Carbon and Energy Balances in Hydrogen-Producing Clostridium tyrobutyricum JM1

  • Jo, Ji-Hye;Lee, Dae-Sung;Kim, Jun-Hoon;Park, Jong-Moon
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.3
    • /
    • pp.291-298
    • /
    • 2009
  • The carbon metabolism of newly isolated Clostridium tyrobutyricum JM1 was investigated at varying initial glucose concentrations (27.8-333.6mM). Because an understanding of metabolic regulations was required to provide guidance for further effective metabolic design or optimization, in this case, maximizing hydrogen production, carbon and energy balances by C. tyrobutyricum JM1 were determined and applied in anaerobic glucose metabolism. The overall carbon distribution suggested that initial glucose concentrations had strong influence on the stoichiometric coefficients of products and the molar production of ATP on the formation of biomass. C. tyrobutyricum JM1 had a high capacity for hydrogen production at the initial glucose concentration of 222.4 mM with high concentrations of acetate and butyrate.

Production of C4-C6 for Bioenergy and Biomaterials (바이오에너지 및 바이오화학원료인 C4-C6 생산)

  • Kim, Byung-Chun;Yi, Sung Chul;Sang, Byoung-In
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.447-452
    • /
    • 2011
  • Depletion of petroleum increased the need of alternative energy and chemical resources. Biomass, a renewable resource, can be transformed to bioenergy and biomaterials, and the materials from biomass will ultimately substitute petroleum based energy and chemical compounds. In this perspective, production of C4-C6 compounds for bioenergy and biomaterials are described for understating of current research progress. n-Butanol and n-butyric acid, the major C4 compounds, are produced by Clostridium tyrobutyricum, Clostridium beijerinckii, and Clostridium acetobutylicum. n-Hexanoic acid, a typical C6 compound, is produced by Clostridium kluyveri and Megasphaera elsdenii. Reported maximum amount of n-butanol, n-butyric acid and n-hexanoic acid was 21, 55, and 19 g/L, respectively, and extraction of these C4-C6 compounds are induced increase production by those anaerobic bacteria. In addition, a new bacterium Clostridium sp. BS-1 produced 5 g/L of n-hexanoic acid using galactitol.

Metabolic Engineering Strategies of Clostridia for Butyric Acid Production (부티르산 생산을 위한 클로스트리듐 대사공학 전략)

  • Noh, Hyeon Ji;Jang, Yu-Sin
    • KSBB Journal
    • /
    • v.32 no.3
    • /
    • pp.169-173
    • /
    • 2017
  • Butyric acid (C4 carboxylic acid) is used as an important compound in food, pharmaceutical, and chemical industries. Currently, butyric acid is mainly produced at the industrial scale through the petrochemical processes. Bio-based butyric acid has also gained attention, because the consumer prefers the food and pharmaceutical ingredients that are produced through fermentation. Clostridia is one of the well-known butyric acid producers, and massively engineered for enhanced production of butyric acid. In this paper, we reviewed the metabolic pathway of clostridia, especially Clostridium acetobutylicum and Clostridium tyrobutyricum, and summarized the metabolic engineering strategies of the strains for enhanced production of butyric acid.

Study on Low Temperature Tolerant Methane-Producing Bacteria for the Treatment of Agricultural and Livestock Wastes (농축산(農畜産) 폐기물(廢棄物) 처리(處理)를 위(爲)한 저온내성(低溫耐性) 메탄 생성균(生成菌)의 특성(特性)에 관(關)한 연구(硏究) II. 저온내성(低溫耐性) Clostridia 의 분리(分離))

  • Jung, Kwang-Yong;Kim, Jai-Joung;Daniels, Lacy
    • Korean Journal of Environmental Agriculture
    • /
    • v.13 no.3
    • /
    • pp.311-320
    • /
    • 1994
  • This study was conducted to investigate the biochemical properties of isolated bacteria, low temperature tolerant methane-producing clostridia which were selected for using them as inoculum to anaerobic fermentation of agricultural and livestock wastes at low temperature. The results were; 1. Low temperature tolerant methane-producing clostridia were isolated from the samples which showed the high methanogenesis rate by enrichment culture at low temperature in cellulose medium. These clostridia, Clostridium botulinum SRC-64, Clostridium scatologens SRC-91 and Clostridium tyrobutyricum SRC-100, were isolated from swampy sediment at latitude $56.9^{\circ}N$, lake sediment IV at latitude $55.0^{\circ}N$, and tidal land soil II at latitude $37.0^{\circ}N$, respectively. The optimum growth temperature for these isolates was $37^{\circ}C$ and the minimum, around $10^{\circ}C$. They all had detectable amount of $F_{420}$, specific coenzyme of methanogens. 2. As anaerobic fermentation products of glucose SRC-64 produced $H_2$, acetic, isovaleric and caproic acid, SRC-91 produced $H_2$, propionic, butyric, valeric, and caproic acid, and SRC-100 produced only acetic and propionic acid. The isolates were produced $CH_4$ ranged from 2.6 to 8.68 n moles/ml for 2 days at $13^{\circ}C$.

  • PDF

Acetone, Butanol, Ethanol Production from Undaria pinnatifida Using Clostridium sp. (Clostridium 종을 이용한 미역으로부터 아세톤, 부탄올, 에탄올 (ABE) 생산)

  • Kwon, Jeong Eun;Gwak, Seung Hee;Kim, Jin A;Ryu, Ji A;Park, Sang Eon;Baek, Yoon Seo;Heo, A Jeong;Kim, Sung-Koo
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.3
    • /
    • pp.236-242
    • /
    • 2017
  • The conversion of marine biomass to renewable energy has been considered an alternative to fossil fuels. Butanol, in particular, can be used directly as a fuel. In this experiment, the brown alga Undaria pinnatifida was selected as a biomass for biobutanol production. Hyper thermal (HT) acid hydrolysis was used as an acid hydrolysis method to produce monosaccharides. The optimal pretreatment conditions for U. pinnatifida were determined as slurry with 10% (w/v) U. pinnatifida content and 270 mM $H_2SO_4$, and heating at $160^{\circ}C$ for 7.5 min. Enzymatic saccharification was carried out with Celluclast 1.5 L, Viscozyme L, and Ultraflo Max. The optimal saccharification condition was 12 U/ml Viscozyme L. Fermentations were carried out for the production of acetone, butanol, and ethanol by Clostridium acetobutylicum KCTC 1724, Clostridium beijerinckii KCTC 1785, and Clostridium tyrobutyricum KCTC 5387. The fermentations were carried out using a pH-control. The optimal ABE fermentation condition determined using C. acetobutylicum KCTC 1724 adapted to 160 g/l mannitol. An ABE concentration of 9.05 g/l (0.99 g/l acetone, 5.62 g/l butanol, 2.44 g/l ethanol) was obtained by the consumption of 24.14 g/l monosaccharide with $Y_{ABE}$ of 0.37 in pH 5.0.